

A RE-EVALUATION OF RADIATION DOSE-RATE CONVERSION FACTORS

Liritzis, I.¹, Stamoulis, K.², Papachristodoulou, C.³, and Ioannides, K.^{2,3}

¹University of the Aegean, Lab of Archaeometry, Dept of Mediterranean Studies, 1 Demokratias Str, Rhodes 85100, Greece ²Archaeometry Center, University of Ioannina, 451 10 Ioannina, Greece ³Dept of Physics, University of Ioannina, 451 10 Ioannina, Greece

Received: 05/10/2012 Accepted: 24/12/2012

Corresponding author: liritzis@rhodes.aegean.gr

ABSTRACT

It has been about forty years since the dose-rate conversion factors commenced to appear in tabular forms and, ever since, periodical updates have been published. The present work contributes to this continuous updating, using the latest evaluated nuclear data for the ²³⁸U-, ²³⁵U- and ²³²Thseries, as well as for ⁴⁰K and ⁸⁷Rb, obtained from the Evaluated Nuclear Structure Data File (ENSDF) database and the Nuclear Wallet Cards. An estimate of the accuracy of the dose-rate conversion factors is further attempted for the first time, by taking into account individual uncertainties in all quantities involved in the calculations.

A literature comparison between all previously published dose-rate conversion factors is presented and their Historical Mean (*HM*) values are calculated. The standard deviation from the *HM* is introduced as a measure of the fluctuation in individual updates. A selected example is given to show that the use of the HM instead of the present dose-rate conversion factors has a minimal impact on dating calculations performed by the thermoluminescence, the optically stimulated luminescence and the electron spin resonance methods. It is concluded that there is no justification in periodically reviewing the dose-rate conversion factors and thus, the present values can be considered as a revised overview that future dating applications should safely rely upon.

KEYWORDS: dose-rate, luminescence, dating, conversion, U, Th, K, Rb, historical mean, updating

INTRODUCTION

The luminescence (Thermoluminescence-TL and Optically Stimulated Luminescence-OSL) and Electron Spin Resonance (ESR) dating methods rely upon the accurate determination of the accumulated radiation dose over an elapsed time and the rate at which this dose has been delivered to the material under study, i.e.:

Age=Equivalent Dose/Annual Dose Rate (1)

To assess the denominator in eq. (1), the concentration or the activity of radioelements is measured and then converted to dose-rate using appropriate conversion factors. The calculation of these conversion factors is a tedious task that takes into account a long list of nuclear data, such as radioactive half-lives, branching ratios, energies and intensities of the alpha, beta and gamma radiation emitted during individual transitions in the naturally-occurring uraniumseries, the thorium-series, potassium-40 and rubidium-87. Thus, dating specialists typically resort to tabulated values available in the literature. Since 1975, a series of dedicated papers have been published reporting dose-rate conversion factors and their updates (Aitken and Bowman, 1975; Carriveau and Troka, 1978; Bell, 1976, 1977, 1979; Aitken, 1985; Nambi and Aitken, 1986; Liritzis and Kokkoris, 1992; Kokkoris and Liritzis, 1997; Aitken, 1998; Adamiec and Aitken, 1998; and Guérin et al., 2011).

The present work aims to contribute to this continuous updating, using the latest evaluated nuclear data and introducing for the first time an estimate of the accuracy of the dose-rate conversion factors. To this end, the uncertainties in all quantities involved in the calculations are taken into account and the associated total uncertainty is determined by error propagation.

THE DATA

The nuclear data used for the present calculations were obtained in May 2012 from the Evaluated Nuclear Structure Data File (ENSDF) database and Nuclear Wallet Cards, available at the Brookhaven National Laboratory (BNL) Web site (http://www.nndc.bnl.gov).

The dose-rate (D), in Gy s⁻¹, is calculated as:

$$D = A\overline{E} \frac{MeV}{gs} \times 1.60218 \times 10^{-13} \frac{J}{MeV} \times 10^{3} \frac{g}{kg}$$
(2)

where A is the activity concentration of the parent radionuclide, in Bq g⁻¹, and is the average energy (alpha, beta or gamma), in MeV per disintegration.

The beta component (average beta energy), includes Auger electrons and internal conversion; the gamma component includes X-rays and annihilation radiation; the alpha recoil and neutrinos are not included due to their insignificant contribution to dose-rates (Adamiec and Aitken, 1998).

To determine the uncertainty (denoted as σ) in dose-rate values, individual uncertainties in all involved quantities – such as half-lives, energies, intensities, branching ratios, atomic abundances etc. – were taken into account and combined using standard error propagation formulas.

The calculations are catalogued in easily accessible tabular forms, following the approach of Guérin et al. (2011). Tables 1 and 2 show the energy emission and dose rate values for the ²³⁸U and ²³⁵U series and for the ²³²Th series, respectively. Data for potassium and rubidium are listed in Table 3.

Compared with the most recent update published by Guérin et al. (2011), the present doserates show slight differences, typically well below 0.5%, with one main exception of the gamma dose-rates for ²³⁵U (see Table 4). These differences, however, are within the uncertainty calculated for the present dose-rate values, which is given as σ (%) in Table 4.

DISCUSSION

A detailed historical survey of published dose-rate conversion factors is presented in Tables 5-7 and further illustrated in Figs 1-6. For the needs of comparison, a "Historical Mean" (HM) dose-rate value has been introduced, which is defined as the arithmetic mean of all previously reported dose-rates for each of the alpha, beta and gamma components and for each of the parent radionuclides (²³⁸U, ²³⁵U, ²³²Th, ⁴⁰K, ⁸⁷Rb). The standard deviation from the mean is also calculated and given as the uncertainty (1σ) in the individual *HM* values. The inspection

of Figs 1-6 shows that, in principle, published dose-rates fluctuate smoothly within the HM 1σ range; pronounced deviations are evidenced only for some dose-rate values.

To demonstrate how the discrepancies between the dose-rate conversion factors, due to nuclear data updates, influence the age calculations of a specific sample with a measured natural OSL signal (and a calculated equivalent dose), we assumed that a typical dating sample, a ceramic sherd, was buried in a geological stratum of typical natural radioactivity, 21 Bq kg-1 ²³⁸U or 1.687 ppm, 1 Bq kg⁻¹ ²³⁵U or 0.0125 ppm (or total Uranium 1.7 ppm), 40 Bq kg^{-1 232}Th or 10 ppm Thorium, 1% of natural K and 50 ppm of natural Rb. In the case of the ²³⁸U, ²³⁵U and ²³²Th decay series, we assumed that they were in equilibrium states. For the purpose of simplicity, we also assumed that the single-aliquot regenerative-dose (SAR) protocol was followed (Murray and Wintle, 2000). In our example there is no need to consider the influence of alpha emission dose-rate because quartz grains (100-150 µm) in the sample are usually etched by a 40% HF solution and the outer portion of the grains, where the alpha energy was delivered and stored as the OSL producing signal, is removed. Tabulated conversion factors are usually expressed in Gy ka⁻¹ per ppm of the parent radioisotope in the case of ²³⁸U, ²³⁵U and ²³²Th. In many cases the determination of the uranium, thorium and potassium radioisotopes is performed with gamma spectroscopy and thus the concentrations are expressed as Bq kg⁻¹ dry matter of sample. The conversion factors can be expressed in Gy ka⁻¹ per Bq kg⁻¹ using the activities of the isotopes per ppm. These values are 12.447 Bq kg⁻¹ per 1 ppm of ²³⁸U, 80.030 Bq kg⁻¹ per 1 ppm of ²³⁵U and 4.058 Bq kg⁻¹ per 1 ppm of ²³²Th. Regarding uranium isotopes ²³⁸U and ²³⁵U, the total natural uranium radioactivity corresponds to 12.927 Bq kg⁻¹ per 1 ppm. In the case of ⁴⁰K, the conversion factors are expressed as Gy ka-1 per 1% of natural K, which corresponds to 317.38 Bq kg-1 and in the case of ⁸⁷Rb as Gy ka⁻¹ per 50 ppm, which corresponds to 44.8 Bq kg⁻¹.

Using the above values and the appropriate dose-rate conversion factors, the total dose-rate delivered on a quartz grain inside the sherd from the surrounding soil can be determined. Calculations were performed based on all previously published conversion factors, as well as on those derived in the present update. The results presented in Table 8 (see also Fig. 7) show that the dose-rate based on the conversion factors assessed in the present work, coincides with the dose-rate based on the Historical Mean in the range of the associated errors.

In the case when fine grains of quartz are used for the equivalent dose estimation (<100 µm), the stage of HF etching and feldspar elimination is omitted. Thus, the contribution of alpha natural radioactivity in the dose delivered to the quartz grains should be taken into account. The additional dose from alpha particles derived from the decay chains of uranium and thorium radioisotopes should be included in the calculations. If so, the estimated dose rates change drastically and the values presented in Table 8, based on present work dose conversion factors should be replaced by 5.20 ± 0.04 Gy ka⁻¹ for ²³⁸U and ²³⁵U (total natural uranium), 8.01 ± 0.03 Gy ka^{-1} for ²³²Th and $14.28 \pm 0.05 \text{ Gy ka}^{-1}$ for the total dose rate.

It could be concluded that the total dose-rate did not vary significantly through the last 37 years (1975-2012), although most of the nuclear data the calculations are based on, have been reevaluated through these years.

Considering the influence of the natural radioactivity components (due to uranium isotopes, thorium, potassium and rubidium) on the total calculated dose-rate, it must be noted that significant differences in values following reevaluations of nuclear data are observed only in the case of the ²³²Th-series. Thus, the changes in the total dose-rate conversion factors through past years are associated mainly with the reevaluations of the ²³²Th-series nuclear data.

On the basis of the HM introduced in this work, it may be argued that any future refinement of nuclear data is unlikely to provide any significant improvement of dose-rate conversion factors.

A final concern related to the annual dose determination should be raised at this point. In the example illustrated above, as in most luminescence dating applications, secular equilibrium in the decay chains through time was assumed, implying that the dose rate remains constant over the burial period. However, increasing evidence of widespread disequilibrium has been reported for several depositional contexts and the implications on dose rate assessment should be considered in dating studies, as important discrepancies in age determination can occur depending on the origin of the disequilibrium and its kinetics (see for example Guibert et al., 2009; Lahaye et al., 2012; Kokkoris and Liritzis, 1997; Danali - Cotsakis and Liritzis, 1985 and references therein). Disequilibrium in the decay chain of ²³²Th is unlikely to be important in most natural materials, given the short half-lives of the longest-lived daughters in the chain, i.e. ²²⁸Ra (5.75 y) and ²²⁸Th (1.91 y). In contrast, because of the much longer half-lives of many of the ²³⁸U daughters (²³⁴U, ²³⁰Th, ²²⁶Ra), disequilibrium should perhaps be expected, particularly in surficial environments or "open systems" in which solution and precipitation processes may significantly disturb the initial state of mobile radionuclides. Once the nature and extent of disequilibria in the U-series have been established, the tabulated dose conversion factors should be considered separately for each radionuclide in the decay chain in order to estimate the mean annual dose rate used in the age calculation.

CONCLUDING REMARKS

Dose-rate conversion factors have been recalculated using the latest nuclear data for the naturally-occurring uranium-series, the thoriumseries, potassium-40 and rubidium-87. Although revision of these calculations has been considered a self-evident task throughout the last four decades, a critical evaluation of the updating process has been attempted in the present work. The comparison between the present calculations and the Historical Mean of previously published updated values suggested that the continuous updating of dose-rate conversion factors is rather unnecessary. The values given in this work may be safely used, as they are the last updates and the only ones which include error estimation. The error in dose-rate conversion factors may be considered to have a marginal contribution to the error in age calculations, compared to other interfering uncertainties.

REFERENCES

- Adamiec, G., Aitken, M.J. (1998) Dose-rate conversion factors: update. Ancient TL, vol. 16, 37-50.
- Aitken, M.J. (1985) Thermoluminescence dating. Academic Press, London.
- Aitken, M.J. (1998) An Introduction to Optical Dating. Oxford University Press, London.
- Aitken, M.J., Bowman, S.G. (1975) TL dating: assessment of alpha particle contribution. *Archaeometry*, vol. 18, 132-138.
- Bell, W.T. (1976) The assessment of the radiation dose-rate for thermoluminescence dating. *Arc-haeometry*, vol. 18, 107.
- Bell, W. T. (1977) Thermoluminescence dating: revised dose-rate data. Archaeometry, vol. 19, 99.
- Bell, W.T. (1979) Thermoluminescence dating: dose rate data. Archaeometry, vol. 21, 243-246.
- Carriveau G.T., Troka, W. (1978) Annual dose rate calculations for TL dating. *Archaeophysika*, vol. 10, 406-422.
- Danali Cotsakis, S., Liritzis, I. (1985) U-disequilibrium in Greek archaeological clays and pottery by gamma-spectrometry: effects on TL dating; *Journal of the Council of Europe PACT*, vol. 15, 75-86.
- Guérin, G., Mercier, N., Adamiec, G. (2011) Dose-rate conversion factors: update. *Ancient TL*, vol. 29, 5-8.
- Guibert, P., Lahaye, C., Bechtel, F. (2009) The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal Cave (Dordogne, France). *Radiation Measurements*, vol. 44, 223-231.
- Kokkoris, M., Liritzis, I. (1997) Dose versus time for U-Disequilibrium and revised dose-rate data for TL/ESR dating. *Journal of the Council of Europe PACT*, vol. 45(4), 281-294.

- Lahaye C., Guibert P., Bechtel F. (2012) Uranium series disequilibrium detection and annual dose determination: A case study on Magdalenian ferruginous heated sandstones (La Honteyre, France). *Radiation Measurements*, vol. 47, 786-789.
- Liritzis I., Kokkoris M. (1992) Revised dose-rate data for thermoluminescence/ ESR dating. *Nuclear Geophysics*, vol. 6, 423-443.
- Murray A.S., Wintle A.G. (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. *Radiation Measurements*, vol. 32, 7-73.
- Nambi, K.S.V., Aitken, M.J. (1986) Annual dose conversion factors for TL and ESR dating. *Archaeometry*, vol. 28, 202-205.

Table 1. Energy release an	l dose rates in th	e uranium (²³	³⁸ U and ²³⁵ U)	decay series
----------------------------	--------------------	---------------------------	---------------------------------------	--------------

					Alp	ha					Bet	а					Gan	nma		
	Half-life				Dose		Dose rate				Dose		Dose rate				Dose		Dose rate nat.	
Isotope	(s)	α	Energy	ю	rate	ю	nat. U	ь	Energy	υ	rate	ø	nat. U	в	Energy	в	rate	a	D	σ
²³⁸ U	1.41E+17	9.46E+13	4.191	0.177	0.264	0.011	0.262	0.011	0.007	0.001	0.0004	0.0000	0.0004	0.0000	0.001	0.000	0.0001	0.0000	0.0001	0.0000
^{234}Th	2.08E+06	2.59E+03							0.059	0.002	0.0037	0.0001	0.0037	0.0001	0.008	0.000	0.0005	0.0000	0.0005	0.0000
^{234m}Pa	6.95E+01	6.60E-01							0.812	0.002	0.0510	0.0001	0.0507	0.0001	0.016	0.000	0.0010	0.0000	0.0010	0.0000
234 Pa	2.41E+04	1.80E+02							0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	0.0000	0.0000	0.0000
²³⁴ U	7.74E+12	1.89E+10	4.752	0.009	0.299	0.001	0.297	0.001	0.011	0.000	0.0007	0.0000	0.0007	0.0000	0.001	0.000	0.0001	0.0000	0.0001	0.0000
²³⁰ Th	2.38E+12	9.46E+09	4.664	0.015	0.293	0.001	0.291	0.001	0.012	0.001	0.0008	0.0000	0.0008	0.0000	0.001	0.000	0.0001	0.0000	0.0001	0.0000
²²⁶ Ra	5.05E+10	2.21E+08	4.773	0.005	0.300	0.000	0.298	0.000	0.004	0.000	0.0002	0.0000	0.0002	0.0000	0.007	0.000	0.0005	0.0000	0.0005	0.0000
²²² Rn	3.30E+05	2.59E+01	5.489	0.001	0.345	0.000	0.343	0.000							0.000	0.000	0.0000	0.0000	0.0000	0.0000
218 Po	1.86E+02	7.20E-01	6.001	0.000	0.377	0.000	0.375	0.000												
214 Pb	1.61E+03	5.40E+01							0.291	0.005	0.0183	0.0003	0.0182	0.0003	0.239	0.002	0.0150	0.0001	0.0149	0.0001
^{214}Bi	1.19E+03	2.40E+01	0.001	0.000	0.000	0.000	0.000	0.000	0.660	0.003	0.0415	0.0002	0.0412	0.0002	1.476	0.002	0.0928	0.0001	0.0921	0.0001
214 Po	1.64E-04	2.00E-06	7.685	0.000	0.483	0.000	0.480	0.000							0.000	0.000	0.0000	0.0000	0.0000	0.0000
^{210}Pb	7.00E+08	6.94E+06							0.033	0.001	0.0021	0.0000	0.0021	0.0000	0.005	0.000	0.0003	0.0000	0.0003	0.0000
²¹⁰ Bi ²¹⁰ m.	4.33E+05	4.32E+02	100.3	000 0		00000	100.0	0000	0.389	0.000	0.0245	0.0000	0.0243	0.0000	00000	0000	0000 0	00000	0000 0	00000
238r1 +040	1.200=+0/	1./3E+02	40 CV	0.179	405.U	110.0	166.0	0000	00000	0000	0.1422	00000	000000	00000	1 755	0.000	00000	00000	0.1006	00000
0, 1014	radon		18 38	0.178	1 156	0.011	1 148	110.0	0 904	0.000	6950.0	00000	2741.0	-00000	0.0348	0 0004	0 0022	0.0000	0.0000	00000
and to	TOPPT		00.01	0/110	ACT I	110.0	0111	110.0		7000	10000	70000	00000	70000	01-00-0	10000		000010	7700'0	00000
²³⁵ U	2.22E+16	1.58E+13	4.116	0.163	1.664	0.066	0.0118	0.0005	0.033	0.0015	0.0134	0.0006	0.0001	0.0000	0.1645	0.0016	0.0665	0.0006	0.0005	0.0000
231 Th	9.19E+04	1.58E+13							0.142	0.0210	0.0573	0.0085	0.0004	0.0001	0.0230	0.0019	0.0093	0.0008	0.0001	0.0000
231 Pa	1.03E+12	1.58E+13	4.367	0.013	1.766	0.006	0.0126	0.0000	0.031	0.0016	0.0127	0.0006	0.0001	0.0000	0.0396	0.0012	0.0160	0.0005	0.0001	0.0000
^{227}Ac	6.87E+08	1.58E+13	0.070	0.001	0.028	0.001	0.0002	0.0000	0.012	0.0007	0.0049	0.0003	0.0000	0.0000	0.0006	0.0000	0.0002	0.0000	0.0000	0.0000
227 Th	1.61E+06	7.78E+03	5.820	0.095	2.353	0.039	0.0167	0.0003	0.046	0.0065	0.0187	0.0026	0.0001	0.0000	0.1565	0.0048	0.0633	0.0019	0.0005	0.0000
$^{223}\mathrm{Fr}$	1.32E+03	4.20E+00							0.009	0.0005	0.0037	0.0002	0.0000	0.0000	0.0008	0.0001	0.0003	0.0000	0.0000	0.0000
²²³ Ra	9.88E+05	4.32E+03	5.665	0.083	2.291	0.034	0.0163	0.0002	0.063	0.0006	0.0254	0.0002	0.0002	0.0000	0.1352	0.0012	0.0547	0.0005	0.0004	0.0000
219 Rn	3.96E+00	1.00E-02	6.742	0.088	2.726	0.035	0.0194	0.0003	0.006	0.0000	0.0026	0.0000	0.0000	0.0000	0.0582	0.0023	0.0235	0.0009	0.0002	0.0000
^{215}Po	1.78E-03	4.00E-06	7.392	0.002	2.989	0.002	0.0213	0.0000												
211 Pb	2.17E+03	1.20E+01							0.450	0.0023	0.1818	0.0009	0.0013	0.0000	0.0637	0.0006	0.0258	0.0002	0.0002	0.0000
^{211}Bi	1.28E+02	1.20E+00	6.549	0.013	2.641	0.005	0.0188	0.0000	0.000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0456	0.0004	0.0184	0.0002	0.0001	0.0000
$^{211}\mathrm{Po}$	5.16E-01	3.00E-03	0.021	0.000	0.008	0.000	0.0001	0.0000	0.000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0449	0.0009	0.0182	0.0004	0.0001	0.0000
²⁰⁷ TI	2.86E+02	1.80E+00							0.492	0.0021	0.1988	0.0009	0.0001	0.0000	0.0658	0.0006	0.0266	0.0003	0.0005	0.0000
²³⁵ U, tota	_		40.742	0.225	16.474	0.091	0.117	0.001	1.283	0.0224	0.5190	0600.0	0.0037	0.0001	0.7536	0.0062	0.3047	0.0025	0.0022	0.0000
Total							2.793	0.011					0.1459	0.0004					0.1118	0.0002
Pre-radoi	n, total						1.265	0.011					0.0602	0.0002					0.0044	0.0000
Notes 1. Ene 2. Dos 3. Bra (1.380) (1.380) 4. The its shc 5. The	: rgies are g e-rates arc nching rai row label row label rt half-life mass abu	given in M e given in M itios are ((or ²²³ Fr, (i ed "238U,) and its on the states of an and the states of t	feV an LGy ka J.16±0.(0.276±0.) pre-rac daught ised in	d repr d repr 04)% f(0.004)% don g ters.	sent the spm of or ²³⁴ Pa or ²³⁴ Pa or ²¹¹ ives va ives va	he energ parent, (, (99.84 Po and lues fou	gy emil assur ±0.04) (99.724 r 100% r 100%	ted pe ing eq % for ² ⊨±0.004 escapé l urani	r disint uilibriu ²³⁴ U, (99)% for ² o of ²²² Ri	egratio 	n. e decay .002)% .rad on,	r chains for ²¹⁴ P total", % for ²²	b, (99.5 howev	79±0.0 er, incl	01)% fi udes tł ±0.001)	or ²¹⁴ Pc ie conti % ²³⁵ U,), (98.62 ributior	20±0.00¢ 1 of ²¹⁹ R	t)% for n (beca g to the	²²⁷ Th, use of natu-
ral atc 6. The	mic abundanti activity p	dances of er ppm o	(99.274 f paren	4±0.001 tt is (12	l)% anc 447±0.	I (0.720 008) Bc	±0.001 } kg ¹ f(%, res л ²³⁸ U,	pective (80.030	ly.)±0.056)	Bq kg	l for ²³⁵	U and (12.927-	±0.008)	Bq kg	1 for nat	tural ur	anium.	

				Alt	sha			Be	ta			Gam	ıma	
	11alf-lifc								Dosc				Dose	
Isotope	(s)	ь	Energy	b	Dose rate	ь	Energy	ь	rate	ь	Energy	ь	rate	ь
⁵³² Th	4.43E+17	1.89E+15	3.997	0.0732	0.0820	0.0015	0.0104	0.0004	0.0002	0.0000	0.0011	0.0001	0.000	0.0000
²²⁸ Ra	1.81E+08	1.89E+15					1600.0	0.0007	0.0002	0.0000	0.0001	0000.0	0.000	0.0000
Ac	2.21E+04	1.89E+15					0.4122	0.0452	0.0085	0.0009	0.8614	0.0056	0.0177	0.0001
ЧЦ ₈₇₇	6.03E) 07	1.89E115	5.404	0.0801	0.11.09	0.0017	0.0179	0.0002	0.0004	0.000.0	0.0078	0.0003	0.0002	0.000.0
²²⁴ Ra	3.14Ei 05	1.99E) 02	5.673	0.0039	0.1164	0.0005	0.0022	0.000.0	0.0000	0.0000	0.0104	0.0001	0.0002	0:0000
$^{220}\mathrm{Rm}$	5.56E+01	1.00E-01	6.287	0.0015	0.1290	0.0006					0.0006	0.0001	0.000	0.0000
²¹⁶ Po	1.45E-01	2.00E-03	6.778	0.0005	0.1391	0.0006					0.0000	0.0000	0.000	0.0000
$\mathbf{q}_{\mathbf{d}_{\mathrm{TT}}}$	3.83E+04	3.60E+01					0.1714	0.0032	0.0035	0.0001	0.1438	0.0013	0.0029	0.0000
$^{212}\mathrm{Di}$	3.63EI 03	3.60E1 00	2.176	0.0054	0.0446	0.0002	0.5035	0.0013	0.0103	0.0001	0.1 040	0.0012	0.0021	0:000
²¹² Po	2.99E-07	2.00E-09	5.628	0.0053	0.1155	0.0005								
²⁰⁸ TI	1.83E+02	2.40E-01					0.2141	0.0020	0.0044	0.0000	1.2150	0.0022	0.0249	0.0001
²³² Th, total			35.943	0.1088	0.7375	0.0026	1.3409	0.0453	0.0275	0.0009	2.3444	0.0062	0.0481	0.0002
^{232,} Ih, pre-thor	uo		15.074	0.1085	0.3093	0.0024	0.4518	0.0452	0.0093	0.0009	0.8810	0.0056	0.0181	0.0001

Notes:

Energies are given in MeV and represent the energy emitted per disintegration. Dose-rates are given in Gy ka⁻¹ per ppm of parent, assuming equilibrium in the decay chains. Branching ratios are $(64.06\pm0.06)\%$ for ²¹²Po and $(35.94\pm0.06)\%$ for ²⁰⁸Tl. The rows labeled "pre-radon" give values for 100% escape of ²²⁰RN. The activity per ppm of parent is (4.058 ± 0.017) Bq kg⁻¹.

Table 2. Energy release and dose rates in the ²³²Th decay series.

		⁴⁰ K		⁸⁷ Rb	
		value	σ	value	σ
Natural abundance (mg g ⁻¹)		0.1196	0.0010	283.0	0.2
Half-life (y)		1.248E+09	3.000E+06	4.81E+10	9.00E+08
Average energy per disintegration	Beta	0.499	0.001	0.0817	0.0007
(MeV)	Gamma	0.1558	0.0026		
Specific activity (Bq kg ⁻¹) for 1% nat.		217 /	20	11 8	0.8
K and 50 ppm of nat. Rb		517.4	2.0	44.0	0.8
Dose-rate (Gy ka-1) for concentrations	Beta	0.8011	0.0073	0.0185	0.0004
as above	Gamma	0.2498	0.0048		

Table 3. Dose rate data for potassium and rubidium.

Table 4. An overview of calculated uncertainties for the present dose-rate values, given as σ (%). The columnslabelled as G (%) show percentage relative differences between the present dose-rates and those reported in the
most recent update by Guérin et al. (2011).

	alpha		beta		gamma	a
	σ (%)	G (%)	σ (%)	G (%)	σ(%)	G (%)
²³⁸ U, total	0.41	0.00	0.28	0.21	0.18	-0.73
²³⁸ U, pre-radon	0.96	0.00	0.35	-0.18	0.00	0.00
²³⁵ U, total	0.85	-1.28	2.70	0.00	0.00	9.09
U-nat., total	0.39	-0.07	0.27	0.14	0.18	1.69
U-nat., pre-radon	0.87	-0.16	0.33	-0.17	0.00	4.54
²³² Th, total	0.35	0.00	3.27	-0.73	0.42	0.42
²³² Th, pre-radon	0.78	0.00	9.68	-1.08	0.55	0.55
⁴⁰ K	-	-	0.91	0.36	1.9	0.28
⁸⁷ Rb	-	-	2.16	0.00	-	-

					Dose-rates	(Gy ka ⁻¹) per	ppm of natu	ral U				
			U, tí	otal					U, pre-	-radon		
Reference	Alpha	lσ	Beta	1σ	Gamma	lσ	Alpha	lσ	Beta	lσ	Gamma	lσ
Present work	2.793	0.011	0.1459	0.0004	0.1118	0.0002	1.265	0.011	0.0602	0.0002	0.0044	0.0000
Guérin et al. (2011)	2.795		0.1457		0.1116		1.267		0.0603		0.0042	
Aitken (1998)	2.776		0.1450		0.1130		1.106		0.0600		0.0043	
Adamiec & Aitken (1998)	2.780		0.1460		0.1130		1.260		0.0600		0.0044	
Liritzis & Kokkoris (1992)	2.832		0.1468		0.1108							
Nambi and Aitken (1986)	2.781		0.1470		0.1136		1.261		0.0613		0.0042	
Aitken (1985)	2.779		0.1461		0.1149		1.260		0.0610		0.0056	
Bell (1979)	2.783		0.1462		0.1148		1.262		0.0609		0.0056	
Carriveau & Troka (1978)	2.790		0.1459		0.1238							
Bell (1977)	2.783		0.1462		0.1148		1.262		0.0609		0.0056	
Bell (1976)	2.783		0.1464		0.1268		1.262		0.0593		0.0069	
Aitken & Bowman (1975)	2.744		0.1252		0.1197		1.257		0.0568		0.0088	
Historical Mean $\pm 1\sigma$	2.784	0.020	0.1442	0.0063	0.1161	0.0051	1.244	0.052	0.0601	0.0014	0.0055	0.0015

					Dose-rates	(Gy ka ⁻¹) per	· ppm of ²³² T	'n				
			Thoriur	n, total					Thorium,	pre-thoron		
Reference	Alpha	lσ	Beta	lσ	Gamma	lσ	Alpha	lσ	Beta	lσ	Gamma	lσ
Present work	0.7375	0.0026	0.0275	0.0009	0.0481	0.0002	0.3093	0.0024	0.0093	0.0009	0.0181	0.0001
Guérin et al. (2011)	0.7375		0.0277		0.0479		0.3093		0.0094		0.0180	
Adamiec & Aitken (1998)	0.7320		0.0273		0.0476		0.3050		0.0091		0.0178	
Aitken (1998)	0.7328		0.0273		0.0478		0.2708		0.0091		0.0180	
Liritzis & Kokkoris (1992)	0.7309		0.0274		0.0278							
Nambi & Aitken (1986)	0.7390		0.0286		0.0521		0.3100		0.0108		0.0203	
Aitken (1985)	0.7387		0.0286		0.0514		0.3086		0.0103		0.0208	
Bell (1979)	0.7380		0.0286		0.0514		0.3090		0.0103		0.0208	
Carriveau & Troka (1978)	0.7385		0.0275		0.0463							
Bell (1977)	0.7380		0.0286		0.0514		0.3090		0.0103		0.0208	
Bell (1976)	0.7400		0.0290		0.0500		0.3100		0.0105		0.0183	
Aitken & Bowman (1975)	0.7321		0.0241		0.0504		0.3054		0.0088		0.0186	
Historical Mean $\pm 1\sigma$	0.7361	0.0034	0.0277	0.0014	0.0476	0.0069	0.3041	0.0126	0.0098	0.0007	0.0193	0.0014

Table 5. Literature comparison of uranium (²³⁸U and ²³⁵U) dose-rates.

		Dose-rate per 1% r	s (Gy ka ⁻¹) natural K		Dose-rates (50 pp	Gy ka ⁻¹) per m Rb
Reference	Beta	1σ	Gamma	1σ	Beta	1σ
Present work	0.8011	0.0073	0.2498	0.0048	0.0185	0.0004
Guérin et al. (2011)	0.7982		0.2491		0.0185	
Adamiec & Aitken (1998)	0.782		0.243		0.019	
Liritzis & Kokkoris (1992)	0.8221		0.2460		0.025	
Nambi & Aitken (1986)	0.8144		0.2433		0.023	
Bell (1979)	0.8304		0.2492		0.025	
Carriveau & Troka (1978)	0.8023		0.2482		0.019	
Bell (1977)	0.8216		0.2470			
Aitken & Bowman (1975)	0.8650		0.2409			
Historical Mean $\pm 1\sigma$	0.817	0.025	0.246	0.003	0.022	0.003

Figure 1. Literature comparison of alpha, beta and gamma dose-rates for natural U-total. The Historical Mean (*HM*) value and the corresponding $\pm 1\sigma$ region are also indicated with the solid and dashed lines, respectively.

 Table 8. Comparison of calculated individual and total dose-rates (Gy ka⁻¹) for a hypothetical sample (see the text for details), based on different dose-rate conversion factors from the present work and the literature. The calculated individual and total dose-rates based on the Historical Mean values are presented in the last row.

	Total na	t. U	²³² Th		⁴⁰ K		⁸⁷ Rb		Total	
	Dose-		Dose-		Dose-		Dose-		Dose-	
	rate	σ	rate	σ	rate	σ	rate	σ	rate	σ
Present work	0.439	0.003	0.745	0.009	1.0509	0.014	0.0185	0.010	2.253	0.019
Guérin et al. (2011)	0.438		0.745		1.0473		0.0185		2.249	
Aitken (1998)	0.439		0.738		1.063		0.022		2.262	
Adamiec & Aitken										
(1998)	0.441		0.740		1.025		0.019		2.225	
Liritzis & Kokkoris										
(1992)	0.438		0.544		1.0681		0.025		2.076	
Nambi and Aitken										
(1986)	0.444		0.795		1.0577		0.023		2.320	
Aitken (1985)	0.444		0.789		1.063		0.022		2.318	
Bell (1979)	0.444		0.789		1.0796		0.025		2.337	
Carriveau & Troka										
(1978)	0.459		0.727		1.0505		0.019		2.256	
Bell (1977)	0.444		0.789		1.0686		0.022		2.323	
Bell (1976)	0.465		0.779		1.063		0.022		2.329	
Aitken & Bowman										
(1975)	0.417		0.734		1.1059		0.022		2.279	
Historical Mean $\pm 1\sigma$	0.443	0.014	0.742	0.069	1.063	0.027	0.022	0.002	2.270	0.077

Figure 2. Literature comparison of alpha, beta and gamma dose-rates for natural U-pre-radon. The Historical Mean (*HM*) value and the corresponding ±1σ region are also indicated with the solid and dashed lines, respectively.

Figure 3. Literature comparison of alpha, beta and gamma dose-rates for 232 Th-total. The Historical Mean (*HM*) value and the corresponding $\pm 1\sigma$ region are also indicated with the solid and dashed lines, respectively.

Figure 4. Literature comparison of alpha, beta and gamma dose-rates for ²³²Th-pre-radon. The Historical Mean (*HM*) value and the corresponding $\pm 1\sigma$ region are also indicated with the solid and dashed lines, respectively.

Figure 5. Literature comparison of dose-rates for 40 K. The Historical Mean (*HM*) value and the corresponding $\pm 1\sigma$ region are also indicated with the solid and dashed lines, respectively.

Figure 6. Literature comparison of dose-rates for ⁸⁷Rb. The Historical Mean (HM) value and the corresponding $\pm 1\sigma$ region are also indicated with the solid and dashed lines, respectively.

Figure 7. Comparison of total dose-rates for a hypothetical sample (see text for details), calculated using different dose-rate conversion factors, available in the literature. Calculations based on the Historical Mean (*HM*) values are also shown with the solid line. The dashed lines indicate the ±1σ region from the *HM*.