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ABSTRACT 

This study tests the use of Frequency Ratio (FR), Statistical Index (Wi), and Binary Logistic Regression (BLR) 
methods for establishing predictive maps for Iron Age sites in the Bekaa (Lebanon). As such it stands as the 
first attempt to use archaeological predictive modelling on a national level. The models were generated 
using an archaeological database consisting of 42 Iron Age I and 30 Iron Age II sites located in the Bekaa 
valley in Lebanon and six geo-environmental factors: distance to rivers, distance to cropland, slope, aspect, 
elevation, and terrain texture. The accuracy and predictive capacity of these models were tested using 
Kvamme’s Gain value. The results indicate that the FR method is more reliable in locating areas of 
archaeological potential than Wi and BLR. The analysis of the FR- and Wi-based models shows that distance 
to rivers, terrain texture, and elevation provide the most significant classes affecting settlement incidence. On 
the other hand, in the BLR, distance to crops and distance to rivers are the most statistically significant 
explanatory variables for identifying areas with high archaeological probability. The archaeological 
predictive maps produced in this study form a valuable tool for cultural heritage management and any 
future archaeological investigation of the Bekaa region. 
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1. INTRODUCTION 

The present paper provides a Geographic 
Information System (GIS) comparative study for 
archaeological predictive modelling (APM) in the 
Bekaa valley (Lebanon) using Frequency Ratio (FR), 
Statistical Index (Wi), and Binary Logistic Regression 
(BLR). This study aims to locate the potential area in 
the Bekaa hosting Iron Age I and Iron II sites. The 
choice of this period for modelling is mainly related 
to its importance as a historical pivot between the 
settlement trends of the Bronze Age period and the 
emergence of new trends in the Hellenistic and 
Roman periods (Marfoe, 1998). The archaeological 
evidence related to this period in Lebanon and the 
Bekaa more specifically remains relatively thin 
(Marfoe, 1998). However, Marfoe (1995) emphasizes 
the archaeological potential of this region by 
estimating the potential existence of 300 additional 
sites in the Bekaa. Predictive modelling is an efficient 
tool in archaeological resource management (Balla et 
al, 2014a). It aims at investigating the archaeological 
potential of a specified region and establishing 
efficient mitigation strategies for the purpose of 
minimizing or avoiding the impact of anthropogenic 
factors. Another purpose lies in identifying the 
factors that influence the process of settlement 
selection (Eftimoski, Ross, & Sobotkova, 2017; Van 
Leusen et al., 2005). The present case study 
highlights furthermore the importance of APM given 
the increasingly negative impact generated by 
various factors such as agricultural expansion, 
fertilizer extraction, warfare, and urban 
development (Savage & Remple, 2013). The Bekaa 
area was subjected to numerous archaeological 
surveys during the past decades (Bonatz, Ali, & 
Jauss, 2002; Fischer-Genz & Ehrig, 2005; Hachmann, 
1989; Marfoe, 1978, 1995, 1998). Most of the 
conducted surveys have followed conventional 
methods based on field walking techniques, visible 
sites on the 1:20,000 scale topographic maps and 
indications provided by the locals (Newson, 2016). 
While the latter approach is more fitting for small 
area survey, it is deemed unsuitable and time 
consuming for large scale mapping particularly in 
remote areas with limited accessibility. The use of 
geospatial technologies in an archaeological context 
has been gaining some interest during recent years 
in Lebanon (Abou Diwan, 2018; Abou Diwan & 
Doumit, 2016; Abou Diwan & Doumit, 2017; Safadi, 
2013; Savage & Remple, 2013). However, the practice 
of APM is still largely lacking on a national level and 
is relatively scarce on a regional level (Al-Muheisen 
& Al-Shorman, 2004; Wachtel, Zidon, Garti, & 
Shelach-Lavi, 2018). This practice has been widely 
used in North American Archaeology since the 

1970s. It is mainly based on the principle that the 
process of habitat selection is not random and is 
likely related to environmental and cultural 
variables (Verhagen, 2007; Verhagen & Whitley, 
2012; Balla et al, 2014b). Numerous critical reviews 
have tackled the application of APM in archaeology, 
depicting this approach as being environmentally 
deterministic, thus overlooking the impact of 
cultural parameters in the process of habitat 
selection (Wheatley & Gillings, 2002). The 
methodological approach used for the creation of a 
predictive model in the present paper, variously 
labelled as inductive (Kamermans & Wansleeben, 
1999) correlative (Judge et al., 1988) and data-driven 
(Wheatley & Gillings, 2002), is based on the spatial 
distribution of known archaeological sites and their 
relation to the physical properties of the landscape 
(Van Leusen et al., 2005; Wheatley & Gillings, 2002).  

2. STUDY AREA 

The study area lies within the Bekaa valley in 
Lebanon. It is a narrow and high plain, stretched out 
between the arid slopes of the Lebanon and Anti-
Lebanon mountain chains. This region is 
characterized by a dry and continental climate with 
average annual precipitation greater than 700 mm in 
the southern part and 200 mm towards the North. 
This marked fluctuation in the rainfall pattern 
between South and North is due to the orographic 
effect of the Lebanese mountain chains affecting the 
spatial distribution of the precipitation (Traboulsi, 
2010). The climatic contrast between South and 
North is reflected in agriculture, creating land 
inequality which eventually has a substantial effect 
on settlement patterns (Sanlaville, 1963). 
Geologically the area is composed of various types 
of rock formations with chalks, limestone, and marl 
from the Late Cretaceous-Neogene; limestone 
conglomerates and lake deposits from the Miocene 
as well as sand-lake deposits from the Quaternary 
(Dubertret, 1955; Hawie et al., 2015). The 
predominant soil types are calcaric, vertic, and 
humo-eutric cambisol (Darwish et al., 2006). The 
study area was delimited using the Minimum 
Bounding Geometry tool in ArcGIS; it represents the 
rectangle of the smallest area enclosing all Iron I and 
Iron II settlements. It extends over an area of 1,877 
Km2 ranging in altitude between 590 m and 2,194 m. 
The boundaries were further buffered with a 1 km 
distance in order to reduce the impact of artificial 
edge effect (Griffith 2010). This demarcation stands 
as the sole convenient choice given the lack of 
archaeological and textual data regarding the 
political and administrative boundaries in the Bekaa 
during this period. Two areas located towards the 
southern limits of the study region were excluded. 
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First, the area covered by the artificial Qaraoun lake 
constructed in 1959 in the vicinity of the Qaraoun 
village in Southern Bekaa and second the land 
surface which was previously covered by wetlands 
in central Bekaa. The latter would have covered a 
substantial portion of central Bekaa prior to the vast 
drainage operation conducted by the Mameluk 
during the fifteenth century. The expansion of these 

wetlands was recently remodelled by Abou Diwan 
and Doumit (2016). According to the authors, the 
surface area of these wetlands covered an estimated 
126 km2. The accuracy of their established model is 
further corroborated by the spatial configuration of 
Iron Age settlements and their absence within the 
modelled area (Figure 1). 

 

Figure 1. Geographic location of the study showing Iron Age (I-II) sites in the Bekaa (Modern Lebanon) 
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3. MATERIAL AND METHODS 

3.1.  Archaeological Data 

The study began with the preparation of the 
archaeological database of the study area. It was 
initially based on the exhaustive archaeological 
research conducted by Marfoe between 1972 and 
1974 (Marfoe, 1978, 1995). In his survey, the author 
recorded 401 archaeological sites ranging within a 
time frame from the Paleolithic to the Persian 
periods. The area of investigation was roughly 
delimited by the 1,500 m contour line with a more 
systematic coverage of the plain (except for water 
channels and wetlands) than foothills (Marfoe 1995). 
In his study, Marfoe undertook an analysis of 
archaeological site distribution according to 
predefined environments. The author identified four 
major geographical units or environments 
representing altitudinal zonation: valley bottom, 
valley border, valley sides, and mountains. Within 
each unit, different micro-environments were 
defined. The author provides a detailed description 
for each of these environments highlighting its main 
characteristics in terms of soil richness, water 
availability, and agricultural suitability. The 
distribution of Iron Age sites according to these 
microenvironments shows a marked preference for 
flood plains in both Iron Age I and II settlements 
with respectively 26.92% and 26.83%, whereas the 
geographical breakdown of sites per environment 
shows that 63.46% of Iron Age I and 60.97% of Iron 

Age II sites are located in the valley border 
environments (Table 1). Yet, the author does not 
provide a thorough explanation of the classification 
process used in defining these areas. This fact, along 
with the lack of geographical coordinates in the 
enclosed micro-environment map, has prevented us 
from integrating this study in the modelling process. 
Marfoe (1995, 1998) provides the size as well as the 
location of 52 Iron Age I and 43 Iron Age II sites in 
the Bekaa, based on the Lambert Levantine Grid 
Coordinates. However, we have chosen to 
incorporate 42 Iron Age I and 30 Iron Age II sites in 
this study. The remaining sites were discarded, 
given the lack of reliable dating. More recently, 
Savage and Remple (2013) established an updated 
inventory of 82 archaeological tell sites in Lebanon, 
of which 37 have remains from the Iron Age Period 
within the framework of a satellite-based condition 
assessment. The authors provide more accurate data 
for these sites in terms of geographic coordinates 
and settlement size. Nevertheless, we have chosen to 
re-evaluate this data (coordinates and size) based on 
newer high-resolution imagery provided by Esri 
Basemap Imagery. The archaeological spatial data 
were then projected in the Universal Transverse 
Mercator (UTM), Zone 36 North coordinate system 
(Table 2). Iron Age III sites were not included in the 
study considering their relatively limited number, 
with only ten confirmed settlements recorded so far. 
The lack of reliable dating is probably the reason 
behind this small number (Marfoe, 1998).  

Table 1. The distribution of Iron Age sites according to Microenvironments (after Marfoe 1998, p. 222, fig. 48) 

 Environments  Microenvironments Iron I Iron II 

Valley Bottom 
Marsh Depressions  5.77% 7.32% 

Flood Plains  26.92% 26.83% 

Valley Border 

Karstic Spring Oases 19.23% 19.51% 

Active Alluvial Fans 21.15% 14.63% 

Lower Colluvial-Alluvial Terraces 13.46% 19.51% 

Upper Colluvial-Alluvial Terraces 9.62% 7.32% 

Valley Side 

Perennial Piedmont Wadis 0.00% 0.00% 

Ephemeral/ Seasonal Piedmont Wadis 1.92% 2.44% 

Rocky Piedmont Slopes and Fossil Fans 0.00% 0.00% 

Outside Surveyed Area - 1.92% 2.44% 

Table 2. List of Iron Age (I-II) settlements in the Bekaa along with their updated size and coordinates. 

Site Name Easting Northing 
Area 
(m2) 

Marfoe 1995 
no. 

Iron Age I Iron Age II 

Tell az-Zaytun 755334 3706712 13970 12 X X 

Kamid El-Loz 761705 3723996 51892 50 X  

Tell el-Jisr 757725 3725696 20514 51 X  

Tell 'Ayn al-Fawqa 766449 3726734 17640 66 X  

Tell Ghazze 761921 3728985 37452 107 X  

Tell Ain Meten 768495 3731123 17640 142 X X 

Tell Bir Dakoue 766454 3732940 37310 105 X X 
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Tell Ain al-Khanzira 769568 3735214 23622 140 X  

Tell Deir Zenoun I 770328 3738525 87997 170 X X 

Tell Bar Elias 768931 3740992 74733 176 X X 

Tell al-Makhada 774445 3741797 18659 182 X  

Tell Neba'a Faour I 774820 3741855 30774 183 X  

Tell Serhan 772504 3742695 19113 173 X X 

Tell Kabb Elias 761225 3742859 19967 159 X  

Tell al-Majdub 767939 3743193 15369 180 X  

Tallat Karmita 768743 3744530 9211 179 X  

Tell 'Aqaibi 770362 3744923 5010 178  X 

Tell Taalabaya 766211 3744988 15092 174 X  

Tell Chtaura 763906 3745184 37365 160 X X 

Tell Delhamieh 773876 3745935 41009 177 X X 

Tell 'Ain Sofar 769434 3746112 6344 186  X 

Tell Rayak 779463 3750074 41354 207 X  

Tell Ain Cherif 779858 3754241 86218 206 X X 

Tell el Ghassil 783967 3757596 34645 233 X X 

Tell Hachbai 782242 3760479 44972 231 X X 

Tell Ayn Ashmal 784008 3760810 10476 236  X 

Tell Hazzine 786827 3762618 30519 232 X X 

Tell Masoud 783799 3764458 17671 237 X X 

Tell Douris I 793605 3765538 17640 249 X  

Tell Majdaloun 788402 3766153 41925 234 X X 

Tell Ain Saouda 786283 3766244 9977 240  X 

Tell el-Hadeth 783381 3766369 40859 269 X X 

Tell Neba'a Litani 786368 3768033 32878 268 X X 

Tell Hawsch as-Safiya 789767 3769374 35965 292 X  

Tell Aalaq 786683 3769581 28334 270 X X 

Tell Maqne II 796443 3775721 7251 294 X X 

Tell Ain Scha't 798105 3781770 26485 309 X X 

Tell Ain Ahle 802866 3782536 8362 326 X X 

Tell Rasm el Hadeth 801798 3782569 8628 324 X  

Tell el Ayyun 801868 3784867 61812 322 X X 

Tell Labwe el Yamin 808704 3788879 43033 345  X 

Tell Qasr Labwe 808144 3789373 40629 344 X X 

Haql al-Bayda 807571 3790893 1510 349 X X 

Tell Sugha 807028 3791720 17500 343 X  

Tell Haql el Gami 808203 3794205 1790 348 X X 

Mrah el-Ouassa 809348 3798531 2394 362 X  

Hermel V 811385 3811352 31375 375 X X 

 

3.2. Geospatial Data 

Different geospatial data were acquired to 
develop the APM: 

 Topographic and morphometric derived 
factors such as slope, elevation, terrain texture, 
and aspect were computed using a 12-meter 

spatial resolution ALOS Palsar (Advanced 
Land Observing Satellite Phased Array type L-
band Synthetic Aperture Radar) Digital 
Elevation Model (DEM) (©JAXA/METI ALOS 
PALSAR L1.5 2008. Accessed through 
ASF DAAC, June 2018). 

http://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm
http://www.asf.alaska.edu/
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 The cropland surface was extracted from a 
1/50,000 scale land cover map of Lebanon 
created by The Food and Agriculture 
Organization of the United Nations (FAO), in 
cooperation with the Ministry of Agriculture. 
(FAO, 1990). 

 Hydrological data including perennial streams 
were extracted from 1/20,000 scale 
topographic maps of Lebanon (Direction des 
affaires géographiques, 1966). The expanse of 
the artificial Qaraoun lake was extracted from 
the land cover map comprising the surface 
covered by swamp vegetation (FAO, 1990). 
The expanse of the ancient Bekaa wetlands 
mentioned in several textual sources was 
extracted from a study conducted by Abou 
Diwan and Doumit (2016). 

3.3.  Selected Geo-Environmental Factors 

Six geo-environmental factors (independent 
variables) were utilized for generating the predictive 
models: proximity to water, proximity to cropland, slope, 
aspect, elevation, and terrain texture.  

 Proximity to water sources is considered an 
influential factor in the establishment of 
settlements (Balla et al, 2013; Balla et al, 2014; 
Nsanziyera, Rhinane, Oujaa, & Mubea, 2018). 
For this purpose, we delineated the stream 
network of this study area from 1/20,000 scale 
topographic maps (Direction des affaires 
géographiques, 1966). Only rivers with a 
permanent flow pattern were selected for the 
modelling process. A cost surface to traverse 
to rivers was then created based on the Tobler 
Hiking Cost Function using the Path Distance 
Spatial Analyst Tool in ArcGIS (Tobler, 1993). 
The purpose is to measure the accumulative 
time cost of traversing each raster cell in the 
study area to reach the nearest available water 
source (Tripcevich, 2009). This method is more 
realistic than Euclidean Distance since the 
latter does not account for topographic factors 
such as slope or surface roughness that might 
impede the movement across the landscape 
thus imposing more time expenditure in the 
present case (Heilen et al., 2013). The cost 
distance to rivers map indicating the time 
required to reach water sources was 
reclassified into 10 different categories using 
the Natural Break of Jenks. This classification 
process was also applied to the remaining 
factors. The results indicate that 41.43% of the 
recorded Iron Age I and 52.13% of Iron Age II 
sites are located within a 21-minute walking 
distance to perennial rivers (Figure 2a). 

 The availability of arable land with high 
suitability for agriculture use is a crucial 
aspect of habitat selection (Vaughn & 
Crawford, 2009). For this purpose, a cost 
surface to traverse to cropland was computed 
based on the Tobler Hiking Cost Function 
(Tobler, 1993) using the Path Distance Spatial 
Analyst Tool in ArcGIS. The results indicate 
that 92.73% of Iron Age I sites and 86.64% of 
Iron Age II sites are located within less than 7 
minutes away from croplands. These areas are 
mainly characterized by calcaric, vertic, and 
humo-eutric cambisol soils that are deemed 
highly suitable for annual and perennial crops 
(Darwish et al., 2006) (Figure 2b). 

 Slope is one of the most regularly used 
geomorphometric derivatives of elevation in 
APM since humans have a general tendency 
to establish their settlements on gentle slope 
terrains (Danese, Masini, Biscione, & 
Lasaponara, 2014; Graves, 2011; Mink, Ripy, 
Bailey, & Grossardt, 2009). The slope map of 
the study area was generated using the Slope 
Spatial Analyst Tool in ArcGIS. The results 
indicate that 62.37% of Iron Age I sites and 
61.97% of Iron Age II sites are located in areas 
with a slope angle less than 6 degrees (Figure 
2c). 

 Aspect stands as an influential factor in the 
location of archaeological sites and has been 
tested in APM (Heilen et al., 2013; Nsanziyera 
et al., 2018; Verhagen etal., 2012). Aspect 
regions are reclassified into 10 categories 
according to the aspect class as: flat (−1°), 
north (0°–22.5°); north ( 337.5°–360°), 
northeast (22.5°–67.5°), east (67.5°–112.5°), 
southeast (112.5°–157.5°), south (157.5°–
202.5°), southwest (202.5°–247.5°), west 
(247.5°–292.5°), and northwest (292.5°–337.5°). 
The distribution of observed archaeological 
sites according to aspect indicates that 40.29% 
of the Iron Age I and 42.96% of Iron Age II 
sites are located on terrains with a south-
facing aspect. This preference is likely related 
to the fact that the south-facing slope provides 
high rates of sun exposure (Heilen et al., 2013) 
(Figure 2d). 

 Elevation above sea level (altitude) is likewise 
a frequently employed variable in APM (Mink 
et al., 2009). Results show a marked preference 
for lower altitudes ranging between 804 and 
935 masl with a percentage of 52.88% and 
54.58% respectively for Iron Age I and Iron 
Age II sites (Figure 2e). 
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 Terrain texture is referred to as ‘‘the amount 
of variability in elevation within a predefined 
radius” (Heilen et al., 2012), indicating the 
degree of irregularities of the surface. This 
factor was computed by calculating the 
standard deviation in elevation within a 

radius of 1 km using the Focal Statistics 
Geoprocessing Tool in ArcGIS. The percentage 
results show a general preference for areas 
with low values of surface roughness for both 
Iron Age I (63.34 %) and Iron Age II sites 
(67.55%) (Figure 2f). 

 

Figure 2. The selected geo-environmental factors used to compute archaeological predictive models. 

3.4. Methods 

3.4.1. Frequency Ratio Model (FR) 

FR is one the most extensively used statistical 
methods in landslide susceptibility mapping (Chen 
et al., 2020; Lee & Talib, 2005; Yalcin et al., 2011). 
However, it has rarely been implemented in APM 
research (Aubry et al., 2012; Nicu et al., 2019). In this 
study, the FR examines the correlation between the 
distribution of archaeological sites and geo-
environmental factors. The purpose is to evaluate the 
extent to which the selected variables in this study 
might have influenced the process of settlement 

selection (Table 3). Each factor category (class) is 
assigned a grade based on the ratio of the total size 
of the observed archaeological sites in each category 
to the area or spatial extent of this category. A ratio 
greater than 1 indicates a high correlation between a 
certain category and the occurrence of archaeological 
sites. Conversely, a ratio of less than 1 suggests that 
this category has less influence on archaeological site 
occurrence (Akgun, Dag, & Bulut, 2008). The 
reclassified raster classes of each factor were 
assigned the value of the corresponding frequency 
ratio values using the Lookup Spatial Analyst Tool 
in ArcGIS. The FR model was computed with the 
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Raster Calculator Spatial Analyst Tool in ArcGIS 
using the following equation (Lee & Talib, 2005): 

 

APM = Fr1+Fr2+Fr3+…+Frn 

 

where FR is the rating of each factor.  
 

3.4.2. Statistical Index Model (Wi) 

 The Wi method is an extensively used model in 
the field of geosciences and landslide susceptibility 
mapping (Yalcin et al., 2011). It has not been applied 
to APM up to this date. It aims to show in this case a 
statistical relationship between the distribution of 
Iron Age settlements and the selected geo-
environmental factors. A weight value is therefore 
assigned to each category (class) of these factors. 
This is done by computing the natural logarithm of 
the archaeological density in each category (class), 
divided by the archaeological density inside the 
whole factor (Table 3). Positive values are assigned 
to a higher than average archaeological density, 
while negative values indicate a lower than normal 
frequency (Rautela & Lakhera, 2000; Van Westen, 

1997). The Wi method was computed according to 
the following formula:  

       (
        

       
)    (

    (  )

    (  )
                 

∑    (  )

∑    (  )

) 

where 
Wi = The weight given to a certain factor category 

(class) 
Densclas = Archaeological density within the 

factor category (class) 
Densmap = Archaeological density within the 

entire factor map 
Npix (Si) = Number of pixels that contain 

archaeological sites in a certain factor category 
(class) 

Npix (Ni) = Total number of pixels in a certain 
factor category (class) 

The Wi values are assigned to the reclassified 
raster factor using the Lookup Spatial Analyst Tool. 
All six geo-environmental factors are then combined 
to generate the APM using the Raster Calculator 
Spatial Analyst Tool. 

Table 3. Frequency Ratio and Statistical Index values assigned to the categories (classes) of each factor. 

Factors Categories 
(classes) 

Area % (a) Sites % (b) Frequency Ratio (FR) 
(b/a) 

Statistical Index 
(Wi) 

   Iron  
Age I 

Iron 
 Age II 

Iron 
 Age I 

Iron 
 Age II 

Iron 
 Age I 

Iron  
Age II 

 
 
 

Cost Distance to 
Rivers 

(Time travel in 
hours) 

0-0.35 15.12% 41.43% 53.12% 2.74 3.51 1.01 1.26 

0.36-0.70 15.60% 26.81% 29.35% 1.72 1.88 0.54 0.63 

0.71-1.04 15.38% 17.22% 6.62% 1.12 0.43 0.11 -0.84 

1.05-1.37 13.83% 8.49% 12.04% 0.61 0.48 -0.49 -0.73 

1.38 – 1.71 12.76% 4.01% 6.66% 0.31 0.15 -1.16 0.00 

1.72 – 2.05 9.54% 0.27% 1.91% 0.03 0.00 -3.55 0.00 

2.06 – 2.38 7.60% 1.16% 0.00% 0.15 0.00 -1.88 0.00 

2.39 – 2.75 5.39% 0.60% 0.00% 0.11 0.00 -2.20 0.00 

2.76 – 3.18 2.91% 0.00% 0.00% 0.00 0.00 0.00 0.00 

3.19 – 3.89 1.88% 0.00% 0.00% 0.00 0.00 0.00 0.00 

Cost Distance to 
Cropland 

(Time travel in 
hours) 

0-0.12 46.97% 92.73% 86.64% 1.97 1.84 0.68 0.61 

0.13-0.33 17.74% 7.27% 13.36% 0.41 0.75 -0.89 -0.28 

0.34-0.59 12.31% 0.00% 0.00% 0.00 0.00 0.00 0.00 

0.6-0.88 7.54% 0.00% 0.00% 0.00 0.00 0.00 0.00 

0.89-1.21 4.91% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1.22-1.57 3.04% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1.58-1.95 2.70% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1.96-2.34 2.24% 0.00% 0.00% 0.00 0.00 0.00 0.00 

2.35-2.84 1.45% 0.00% 0.00% 0.00 0.00 0.00 0.00 

2.85-3.68 1.09% 0.00% 0.00% 0.00 0.00 0.00 0.00 

 
 

Slope (degree) 

0 – 2.8 31.64% 25.15% 26.84% 0.79 0.85 -0.23 -0.16 

2.81 - 5.84 22.92% 37.22% 35.13% 1.62 1.53 0.48 0.43 

5.85 - 9.58 13.16% 30.47% 30.91% 2.32 2.35 0.84 0.85 

9.59 - 13.32 9.29% 5.83% 6.03% 0.63 0.65 -0.47 -0.43 

13.33 - 17.05 7.35% 1.16% 0.98% 0.16 0.13 -1.84 0.00 

17.06 - 20.79 5.85% 0.16% 0.12% 0.03 0.02 -3.58 0.00 

20.8 - 24.53 4.47% 0.00% 0.00% 0.00 0.00 0.00 0.00 

24.54 - 28.5 3.14% 0.00% 0.00% 0.00 0.00 0.00 0.00 

28.51 - 33.41 1.67% 0.00% 0.00% 0.00 0.00 0.00 0.00 

33.42 - 59.57 0.52% 0.00% 0.00% 0.00 0.00 0.00 0.00 

 
 

Flat (-1) 0.00% 0.00% 0.00% 0.00 0.00 0.00 0.00 

North 5.48% 4.72% 4.70% 0.86 0.86 -0.15 -0.15 
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Aspect 

 (0-22.5) 

Northeast 
 (22.5-67.5) 

10.28% 10.14% 10.66% 0.99 1.04 -0.01 0.04 

East 
 (67.5-112.5) 

13.64% 15.60% 15.77% 1.14 1.16 0.13 0.15 

Southeast  
(112.5-157.5) 

17.16% 16.94% 17.61% 0.99 1.03 -0.01 0.03 

South  
(157.5-202.5) 

11.77% 9.72% 10.54% 0.83 0.90 -0.19 -0.11 

Southwest 
 (202.5-247.5) 

9.00% 13.63% 14.81% 1.51 1.65 0.41 0.50 

West (247.5-
292.5) 

11.48% 11.75% 10.11% 1.02 0.88 0.02 -0.13 

North West 
(292.5-337.5) 

14.97% 10.63% 9.93% 0.71 0.66 -0.34 -0.41 

North 
 (337.5-360) 

6.23% 6.88% 5.88% 1.10 0.94 0.10 -0.06 

 
 
 
 
 

Elevation 
(msl) 

589 - 803 5.69% 2.64% 3.24% 0.46 0.57 -0.77 -0.56 

804 - 935 21.06% 52.88% 54.58% 2.51 2.59 0.92 0.95 

936 - 1,036 25.27% 40.21% 40.29% 1.59 1.59 0.46 0.47 

1,037 - 1,136 17.77% 4.03% 1.89% 0.23 0.11 -1.48 -2.24 

1,137 - 1,250 10.62% 0.24% 0.00% 0.02 0.00 -3.80 0.00 

1,251 - 1,375 7.30% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1,376 - 1,526 4.90% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1,527 - 1,696 3.35% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1,697 - 1,885 2.73% 0.00% 0.00% 0.00 0.00 0.00 0.00 

1,886 - 2,193 1.32% 0.00% 0.00% 0.00 0.00 0.00 0.00 

 
 
 
 

Terrain Texture 

1-13 24.07% 64.34% 67.55% 2.67 2.81 0.98 1.0 

14-28 21.16% 18.53% 25.18% 0.88 1.19 -0.13 0.2 

29-45 14.58% 10.60% 3.82% 0.73 0.26 -0.32 -1.3 

46-64 12.42% 4.77% 3.10% 0.38 0.25 -0.96 -1.4 

65-82 8.63% 1.75% 0.35% 0.20 0.04 -1.60 0.0 

83-99 7.47% 0.00% 0.00% 0.00 0.00 0.00 0.0 

100-118 5.97% 0.00% 0.00% 0.00 0.00 0.00 0.0 

119-140 3.45% 0.00% 0.00% 0.00 0.00 0.00 0.0 

141-171 1.71% 0.00% 0.00% 0.00 0.00 0.00 0.0 

172-223 0.53% 0.00% 0.00% 0.00 0.00 0.00 0.0 

 

3.4.3. Binary Logistic Regression Model (BLR) 

BLR is a commonly used predictive analysis 
equation in APM (Holton Jr, 2014; Vaughn & 
Crawford, 2009; Wachtel et al., 2018; Zhu et al., 
2018). It examines the relationship between a binary 
dependent variable which in this case is the presence 
or absence of archaeological sites, and a set of an 
independent variables (the six geo-environmental 
factors). The latter could be continuous, categorical, 
or binary and do not necessarily have a normal 
distribution. The logistic regression function will 
model the probability of occurrence of an event in a 
binary outcome, namely the presence or absence of 
archaeological sites based on the selected factors 
(predictors variables). The predicted probabilities are 
then translated using a sigmoid cost function to 
values constrained between 0 and 1, as explained in 
the equation below (Hosmer & Lemeshow, 2000):  

The model is Prob (Y) =
 

     
 

where Prob (Y) is the probability of an event 
occurring with a value equal to 0 denoting the 
absence of archaeological sites and a value equal to 1 
indicating the presence of archaeological sites; Z is 

the linear combination, Z = B0 + B1.X1 + B2.X2 +…+ 
Bn.Xn; B0 is the intercept or the constant of the model; 
Bn is the slope coefficient of the regression model, 
and X is the value of the selected independent 
variable. The logistic regression was computed using 
the Statistical Package for the Social Sciences (SPSS). 
The Forward Likelihood Ratio method was chosen to 
define the most significant independent variables to 
use in modelling the predictive map with Sig. values 
lower than 0.05. The accuracy of the model was 
assessed using the Omnibus tests of model 
coefficients to test whether the new models, 
including the independent variables, are different 
from the base model with the intercept. The results 
show an enhancement in the accuracy of both Iron 
Age I and II models as can be seen with the high chi-
squared values and sig. values less than 0.05 (Table ). 
The Hosmer and Lemeshow test was also used to 
examine the goodness of fit of the model. Low Chi-
squared values with larger Sig. values (closer to 1) 
indicate a good logistic regression model fit (Hosmer 
& Lemeshow, 2000) (Table 5). The pseudo-r-squared 
statistic Nagelkerke's R2 was also calculated to 
evaluate the capacity of the independent variables in 
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`predicting the dependent variable. A value equal to 
1 indicates a perfect fit, whereas a value of zero 
shows no relationship (Menard, 2008). A relatively 
good fit is confirmed for a value greater than 0.2 
(Clark & Hosking, 1986) which is the case for this 
study with values of 0.469 for Iron Age I and 0.578 
for Iron Age II sites. Finally, the most statistically 
significant variables retained for establishing the 

predictive maps are cost distance to cropland, cost 
distance to rivers, and aspect. The predictive model 
for Iron Age I and II sites was created with the 
Raster Calculator Spatial Analyst Tool in ArcGIS, 
using the equations below. The generated predictive 
maps have a value ranging between 0 to 1, with 1 
representing the highest likelihood of settlement 
incidence. 

 
APM Iron I= 1 div (1 + (exp (- (-1.775 + (-7.409* cost distance to cropland) + (-1.330* cost distance to rivers))))) 
  
APM Iron II= 1 div (1 + (exp (- 3.189+ (-8.321* cost distance to cropland) + (-1.595 * cost distance to rivers) + 
(-0.009 * aspect))))) 

 

Table 4 Omnibus Tests of Model Coefficients 

Iron Age I Chi-square df Sig. 

Step 15.423 1 0.000 

Block 39.721 2 0.000 

Model 39.721 2 0.000 

Iron Age II Chi-square df Sig. 

Step 7.636 1 0.006 
Block 44.183 3 0.000 
Model 44.183 3 0.000 

Table 5 Hosmer-Lemeshow goodness-of-fit test 

Iron 1 Chi-Square df. Sig. 

Step 1 8.559 8 0.381 
Step 2 3.540 8 0.896 

Iron 1I Chi-Square df. Sig. 

Step 1 10.533 8 0.230 
Step 2 2.839 8 0.944 
Step 3 13.323 8 0.101 

 

4. RESULTS AND DISCUSSION 

The final APMs generated using the methods 
above were classified into five probability classes: 
very low, low, moderate, high, and very high using 
natural breaks of Jenks (Figure 3). In terms of 
evaluating the precision of the computed predictive 
maps, defined by Verhagen (2008) as the capacity of 
the model to narrow down the limit of the area with 
the highest probability, the results show that the FR 
models exhibit the best results for Iron Age I sites 
with 16.66% of the total surface of the study. As for 
Iron Age II sites, the BLR model seems to 
outperform the other models with a percentage of 
11.69 (Figure 4). In terms of assessing the accuracy of 
the models, defined as the ability of the highest 
probability area to capture most of the 
archaeological sites (Verhagen, 2008), the calculation 
was first performed based on the distribution 
percentage of archaeological site surfaces. The 
results show a better performance for the Wi method 
in both Iron Age I and II sites with respectively 
74.53% and 74.97% of the total archaeological surface 
falling in the Very High Probability Class (Figure 5). 
The number-based distribution percentage of 

archaeological sites displays approximately similar 
results as the surface-based distribution. The highest 
percentages of archaeological sites are recorded 
using the Wi method with 71.43% for Iron Age I and 
73.33% for Iron Age II settlements (Figure 6). The 
performance assessment of the predictive model was 
examined using simple Gain statistics after Kvamme 
and expressed using the following formula: 
(Kvamme, 1988). 

 
G = 1- (%PS /%GS)  

 
Where G is the gain mode, PS is the percentage of 

the area characterized by the highest probability of 
hosting archaeological sites, and GS is the 
percentage of observed archaeological sites within 
this area. Further, we have also performed the 
calculation based on the percentage of observed 
archaeological surfaces. The gain values extend from 
0 to 1. A value closer to 1 indicates high accuracy in 
predicting archaeological sites. The calculated gain 
for Iron Age I models shows a better performance 
for the FR method with respectively a value of 0.75 
and 0.70 for surface and number-based approach. As 
for Iron Age II models, the highest recorded K gain 
value using the surface-based method is registered 
in the FR, with 0.81. The number-based approach 
exhibits slightly different K gain values with the BLR 
model at the forefront, followed by the FR with 
respectively 0.82 and 0.79 (Table 6, Table 7). In any 
event, the overall picture which emerges from this 
study shows that the FR Method provides a more 
consistent indicator to the archaeological potential of 
the Bekaa during the Iron Age Periods. Although 
Kavmme’s gain values remain one of the widely 
used methods for testing the validity of 
archaeological predictive models, major downsides 
have been highlighted in the scholarly literature as 
this test method is based on the same data used for 
the computation of the APM. The use of an 
independent random sample survey remains, 
according to critics, one of the best solutions for 
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testing the accuracy of the model (Gibbon, 2002; 
Verhagen, 2008).  

As stated above, the selection of geo-
environmental factors for computing the predictive 
model is based on the assumption that the natural 
environment played an influential role in the process 
of habitat selection in ancient societies. The relative 
impact of these variables is detected through the 
implemented methodological approach. The analysis 
of the FR and Wi methods shows that the areas 
located within a 21-minute walking distance to 
rivers have significant impact on the incidence of 
Iron Age sites. Regarding distance to crops, the areas 
located within a 7-minute walking distance are 

likewise highly favorable to the establishment of 
settlements. Slope, elevation and terrain texture 
respectively ranging between 5.85 – 9.58 degree, 804 
– 935 m and 1-13 are the most important classes 
affecting archaeological sites occurrence. As for 
aspect, the southern direction has the most 
significant impact on the incidence of Iron Age sites. 
It can therefore be concluded that distance to rivers, 
terrain texture, and elevation have the most 
significant categories in the process of generating 
predictive models. The BLR method shows that 
distance to crops and distance to rivers are the most 
statistically significant explanatory variables 
concerning settlement selection. 

 

 

Figure 3. The archaeological predictive maps based on FR, Wi and BLR (The areas highlighted in black were not 
incorporated to the study) 
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Figure 4. The surface percentage of each probability class 

 

Figure 5. The archaeological surface percentage within each probability class 

 

Figure 6. The archaeological sites percentage within each probability class 



GIS-BASED COMPARATIVE ARCHAEOLOGICAL PREDICTIVE MODELS FOR IRON AGE SITES IN THE BEKAA (LEBANON) 155 

 

Mediterranean Archaeology and Archaeometry, Vol. 20, No 2, (2020), pp. 143-158 

Table 6. Kvamme’s gain values based on the percentage of the observed surface of archaeological sites 

Probability Iron I Iron II 

 FR SI BLR FR SI BLR 
Very low - -149.3 - - - -8.25 

Low -49.96 -23.06 -0.53 -93.66 -10.92 -0.56 
Moderate -2.60 -5.08 -0.51 -2.76 -4.04 0.19 

High 0.26 -0.26 0.35 0.08 -0.31 0.54 
Very High 0.75 0.68 0.70 0.81 0.77 0.74 

Table 7 Kvamme’s Gain values based on the percentage of the observed number of archaeological sites 

Probability Iron I Iron II 

 FR SI BLR FR SI BLR 
Very low - - - - - -6.37 

Low -7.29 -6.95 -0.65 -5.13 -1.91 -1.36 
Moderate -2.02 -3.98 -0.08 -1.23 -8.41 -0.22 

High 0.42 -0.22 0.42 0.10 -0.35 -0.12 
Very High 0.70 0.67 0.67 0.79 0.77 0.82 

 

5. CONCLUSION 

The use of APM has not been previously 
employed in Lebanese archaeology. This study 
presented three methodological approaches for 
creating an APM for Iron Age (I-II) sites in the 
Bekaa. The applied methods are qualified as 
inductive. They are based on the statistical analysis 
of archaeological settlement location relative to geo-
environmental independent variables. The FR and 
BLR have been implemented in previous APM 
studies, while the application of the Wi model is 
being tested for the first time in archaeology. These 
methods had not yet been comparatively evaluated 
in APM before the present study. The results show 
that all models have proven to be objective, yielding 

reliable results in terms of weight attribution and the 
evaluation of the impact of each factor as can be 
detected through Kvamme’s gain values. 
Comparatively speaking, the FR model has generally 
proven to have a relatively higher prediction 
accuracy for Iron Age I-II sites using the surface-
based approach. K gain value based on 
archaeological site numbers confirms the stated 
results for Iron Age I sites but indicates a slightly 
better performance of BLR for Iron Age II sites. The 
generated prediction maps form an efficient tool in 
the framework of risk assessment of the cultural 
heritage of the Bekaa and a platform for any future 
archaeological investigations in this area. 
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