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ABSTRACT 

The paper explains how the ancient Egyptian architects used the arithmetic of unit-fractions to reckon the 
astronomical tilt of 26° 31' 23" ±5" for the Great Pyramid’s entrance passage, which is correlated to the latitude 
of ~ 29° 58' 45" north and Earth’s axial tilt ~24° 6' of nearly 5070 years ago. Therefore, in the beginning, the 
paper explains for the first time, with the supporting translation, the architectonic and geometric reckoning-
methods of almost 40% of the so-called Rhind Mathematical Papyrus (RMP). Firstly, it explains the meanings 
of 36 mathematical and geometric symbols in RMP’s hieratic text. Secondly, in relation to the divisions of the 
Egyptian cubit rod, it explains the architectonic decomposition method of the 2/n table on decomposing the 
sum of two unit-fractions, such as 1/n, into other unit fractions, where n is an odd number from 3 to 101. It 
shows that this recto table, which represents almost 1/3 of RMP, is on subdividing line-segments like 2/n into 
only measurable parts. Thirdly, it shows that RMP#24 is an example of calculations related to the sine of an 
angle and RMP#74 is an example of calculating the values of angles. Fourthly, it shows that RMP#65 is an 
example of using a grid-system to plot and subdivide the arc of half the side of an octagon into 10 parts. 
Finally, the paper shows how the pyramids designers used these ancient Egyptian mathematical and geomet-
ric methods in reckoning and implementing the astronomical tilt of the Great Pyramid’s entrance passage in 
the Giza Plateau. 
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1. INTRODUCTION 

The pyramids of the 4th Dynasty in ancient Egypt 
(Manetho, 1940-1964, pp.45-50) were and still are the 
most outstanding architectonic megalithic-works in 
the history of the humankinds. The term architectonic 
means using basic sciences in designing architectural 
and site-planning projects. It is closely related to the 
new scientific field of Archaeoastronomy that 
searches on the astronomical information that were 
used and encoded in the design of the invaluable ar-
chitectural heritage of the ancient civilizations. Citing 
Ibn Wsif Shah and Ibn Salama Al-Quda’i, Al-Maqrizi 
(1364–1442AD, pp.319-346) mentioned in the pyra-
mids chapter, about 130 Egyptian priests had partici-
pated in designing and implementing the pyramids 
of the 4th Dynasty; they were specialized in construc-
tion sciences, astronomy, mathematics, and the allied 
ancient disciplines. He also mentioned the written 
text on an Egyptian golden tablet that was translated 
to King Philip-II of Macedon. The tablet’s text reveals 
the reason behind building the pyramids of the 4th 
Dynasty, based on understanding the cycle of life and 
extinction of our planet Earth and their knowledge 
about the times of the frequent and diverse cataclys-
mic events in each obliquity cycle of our planet 
(Aboulfotouh, 2007). Particularly the cycle that was 
named after Hor-Mageed-Don or Falcon of the Mighty 
God (Armageddon, i.e., king Suphis-I or Sphinx) that 
is almost 5070 years (Aboulfotouh, 2017). The dis-
course between Solon and the Egyptian priests on the 
outcomes of Earth’s cataclysmic events (Plato, 330BC) 
indicates that the Ancient Egyptians were highly ac-
quainted about this knowledge; see also (Liritzis et al, 
2019) on the ancient cataclysmic events.  

However, designing and constructing megalithic 
structures like the Bent-Pyramid in Dahshure and the 
Great Pyramid in Giza, the best astronomical-models 
in pyramids design theory (Aboulfotouh, 2015) re-
quires having some technical and applied knowledge 
in the fields of mathematics, astronomy, and mega-
lithic construction. On the one hand, transporting and 
lifting of large stone-blocks is the first thing that most 
scholars are wondering how they did it. Based on the 
written texts by the acquainted historians, e.g., (He-
rodotus, 484-425BC, p.427) & (Hassan, 2001, p.88), the 
construction of megalithic structures like the Pyra-
mids of Egypt relies on the manufacture of strong-
ropes, rigid unyielding-spools, and steady wooden-
cranes; as well as knowing the characteristics of 
stones and the smart-use of scales. One of the sup-
porting technical texts was found in the tomb of the 
so-called Tehuti-Hetep in El-Bersheh, which describes 
in detail, how had the ancient Egyptians transported 
a colossal statue equals the weight of 1000 men by 
only 172 men (Newberry et al, 1895, plate-XIV) & 

(Nosonovsky, 2007), using a suitable lubrication 
method (Li et al, 2013).  

On the other hand, regarding pyramids design and 
the related reckonings, because the meanings of all 
the geometric-symbols in the hieratic math-texts are 
not deciphered yet (Aboulfotouh, 2019), scholars of 
the history of mathematics did not see strong evi-
dence in the found math papyri related to the pyra-
mids design-theories, other than reckoning the slope 
ratios of pyramids, e.g., see Griffith’s opinion 
(Gillings, 1982, p.48). In 2007, this author (Aboul-
fotouh, 2007) retrieved the astronomical equations of 
reckoning the tilts of the entrance passages of the larg-
est five pyramids of the 4th Dynasty, with regard to 
place and time, which are represented by the “lati-
tude of the place” and the “angles of earth’s obliquity 
range”, respectively. Each equation (for each pyra-
mid) has been formulated to encode in each tilt an ar-
ray of, diverse and integrated, information about the 
place and/or time, based on the designer’s idea about 
the earth’s obliquity range and the main time inter-
vals in each obliquity cycle. These equations, as well 
as the other astronomical algorithms of pyramids de-
sign models (Aboulfotouh, 2014 & 2015), are based on 
understanding the trigonometric reckonings of sine 
and cosine of an angle. For example, Eq.1 reckons the 
tilt α of the entrance passage of the Great Pyramid 
(Figure 1) in Giza plateau (Aboulfotouh, 2007): 
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Where λ is the latitude of the place, Om and Oi are the 
Earth’s mean and minimum obliquity angles respec-
tively, and Ot is the encoded obliquity of time that im-
plies the date of an important event. Eq.1 was formu-
lated based on the idea of the “contour-circles” that 
correlates the radius of a circle that do expand (or do 
shrink) relative to a 2nd circle that has a constant radius 
and forms the frame of reference for the 1st circle, and 
where both have the same center, see (Aboulfotouh, 
2007). It is like, for example, the circle that appears and 
expands on the surface of water after throwing a stone 
in the river. In Eq.1, the obliquity-of-time factor [1-
(Oi

2/Ot
2)]1/2 represents geometrically a cosine of such 

angle φ in a right-angle triangle, where the spread-out 
length of Ot (the shrinking radius in the obliquity’s de-
scending phase) is its hypotenuse and the spread-out 
length of Oi (fixed radius) is its subtending side, i.e., 
sine φ= Oi/Ot. In this regard, despite the difference in 
concept and application, Lorentz factor of time dilation 
[1-(v2/c2)]1/2 (Einstein, 1921, pp.36-41) was also repre-
sented geometrically in modern research in applied 
physics with a graph of cosine of an angle φ, where sine 
φ= v/c, see (Orozovic, 2020).  
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Figure 1. The Great Pyramid in Giza Plateau. a. shows a picture of the eastern and southern surfaces of the Great Pyra-
mid (in 2015). b. shows a north-south cross section in a spherical co-ordinates system that shows the astronomical de-
sign parameters of the Great Pyramid, while looking due west; where the obliquity of time Ot=~ 24.10°, the latitude λ= 
~ 30° north, and the tilt α of the entrance passage = ~ 26.52°. Besides, the entrance passage is marked by the red line E1-
E2, and the horizontal part is E2-E3, where the tilt starts at point E2 on the line P3-P4 (at 30m below the ground-line G1-

G2), see (Aboulfotouh, 2015). 

Moreover, the published works on the so-called 
Rhind Mathematical Papyrus (RMP) do show on trig-
onometry only the four problems from RMP#56 to 
RPM#59 that reckon the slopes of pyramids’ surfaces 
and RPM#60 on a cone’s slope. RMP was found in 
Luxor in 1858 and it is now (on display) in the British 
Museum (Clagett, 1999, pp.113-114). It was copied in 
circa 1550BC (Aboulfotouh, 2019) & (Britishmu-
seum.org, EA10057&58). After the table of contents 
and the prelude, RMP contains the 2/n table and 84 
mathematical problems. The 2/n table shows the best 
decompositions of the sum of two unit-fractions, such 
as 1/n, into other unit fractions, where n is an odd 
number from 3 to 101; it represents 1/3 of RMP. Fig-
ure 2 shows RMP’s table of contents, its prelude, and 
part of the 2/n table from 2/3 to 2/15. The early phi-
lologists did not recognize that there are other prob-
lems in RMP (like, e.g., RMP#24) about the sine of the 
angle. This is in spite of the last part (in black) in the 
first line of the list of contents in RMP’s prelude says, 
the papyrus includes part “on the subtending side of 
an angle”, see Figure 2. Unfortunately, the early phi-
lologists did not decipher all types of angle symbols 
in RMP. Therefore, Chace et al (1927-1929, p.25) wrote 
for example, RMP#24-38 are essentially problems in 
divisions by fractional expression. Besides, the 
method of decomposition of the 2/n table in RMP 
(Gillings, 1982, p.45) never was correlated to the 
Egyptian cubit rod that was used in the design and 

implementation of buildings and in site planning. In 
addition, they did not decipher too the geometric 
symbols in the text on the survey techniques of how 
to subdivide and plot the diverse intervals of an arc 
in RMP#65, using a grid-system of rectangles. It is the 
survey technique that defiantly suitable for plotting 
the circular horizon of the Giza Pyramids, of 746m ra-
dius in the field (Aboulfotouh, 2002 & 2014). Hence, 
e.g., Chace et al (1927-1929, p.29) thought that 
RMP#65 is on the distribution of 100 loaves among 10 
men. In this regard, this author (Aboulfotouh, 2019) 
showed that the first sentence in line-3 in RMP’s prel-
ude says, “Book on segments binary (the) parts (of 
the) unit”, and the last sentence in line-3 says, “it is for 
the surveyors Irrapedon”. In addition, the 1st two 
words in line-4 say, “to measure lands Qeyas A’pateh” 
(Fig. 2). In the Greek literatures, the professional of 
land-survey in ancient Egypt were called Harpedo-
naptae (Heath, 1921, p.121) or Harpedonaptai that 
was translated as rope stretchers or rope fasteners. 
Harpedonaptae sounds like the current Egyptian 
term Harriepht A’pateh that means “Professionals (of) 
Lands”, respectively. It was shown too that the Har-
pedonaptae knew the right-angle triangle 6-8-10 
(Aboulfotouh, 2019), similar to the triangle(s) of Py-
thagoras (Chiotis, 2021); and they used the complex 
fractions like (7+ 1/2)/100; see RMP#53-54 in (Aboul-
fotouh, 2019).  
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Figure 2. Part of Rhind Mathematical Papyrus (RMP). a- shows the list of contents and the prelude of RMP (right), 
where line-1 & line-2 are the list of contents. The words in a red box in line-1 mean the subtending side of an angle (see 
section-2). The words in the blue boxes (in line-3 and line-4) are “Irrabedon” and “Qeyas Phat-hat or A’pateh”, which 
mean, “surveyors” and “measure lands”, respectively. The left side shows part of the recto table on decomposing frac-
tions like 2/n into unit fractions; where n is an odd number from 3 to 101. E.g., b is on 2/3 in a green box, c is on 2/5, d is 
on 2/7, e is on 2/9, f is on 2/11, g is on 2/13, and h is on 2/15. The title sentence in the gray box means “on line-S’s upright 

length”, and the words in the yellow box mean “thicknesses’ total”. 

The claim that RMP’s source was from the period 
of the 12th dynasty (Chace et al, 1927-1929, p.1) & 
(Clagett, 1999, p.185) has no written evidence in RMP. 
This is because the remaining letters in the cartouche 
in line-4 in its prelude (Figure 2) just says Addiah or 
Addien, which is the plural of folk of Add (Hyksos), 

and this implies, only, the period that during which it 
was copied from the original source. Besides, this au-
thor has proved that the height of each of the largest 
five pyramids of the 4th Dynasty is composed of 7 de-
sign-modules with a constant sub-divider length (1/2 
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cubit of 45cm), which conform to the pyramids prob-
lems RMP#56,57,&58 (Aboulfotouh, 2015); and this 
strongly prove that RMP’s architectonic mathematics 
go back to the period of the 4th Dynasty. 

Over the last fourteen decades, scholars of the his-
tory of mathematics have done great efforts in deci-
phering and translating the mathematical text of RMP 
into different languages, e.g., (Eisenlohr, 1877), (Peet, 
1923), (Chace et al, 1927-1929), (Archibald, 1930), (Van 
Der Waerden, 1975), (Gillings, 1982), (Robins & Shute, 
1987), (Clagett, 1999), (Michel, 2014), and (Imhausen, 
2016). Besides, Archibald (1930) and Gillings (1982, 
p.48) have mentioned names of other scholars too. 
Their most important achievements were that they 
discovered the values of the ancient Egyptian nu-
meral signs, and they understood the reckoning pro-
cedures of RMP’s problems. But the early philologists 
(e.g., Moller, 1927) did not help them much to fully 
comprehend nearly all the geometric symbols in the 
hieratic math-texts; and as a result, the true written 
purposes of many problems in RMP were not under-
stood. However, without their serious works, any 
scholar will start from scratch. Hence, building upon 
their works, together with using the author’s architec-
tonic background on deciphering the meaning and 
geometry of the Egyptian math symbols in the hier-
atic texts, e.g., (Aboulfotouh, 2012 & 2019), this work 
aims to expand slightly the frontier of the field of an-
cient Egyptian mathematics beyond its current do-
main.  

Therefore, using hard evidence, this paper shows 
that the math knowledge in RMP is correlated to reck-
oning and implementing the astronomical tilt of the 
Great Pyramid’s entrance passage. The paper is struc-
tured in five sections after the introduction (Section-
1). Section-2 explains the meanings of some mathe-
matical and geometric symbols in RMP. Section-3 ex-
plains the architectonic method of the 2/n table in 
RMP, on re-subdividing the sum of two segments 
from a line of n equal segments. Section-4 is on the 
trigonometric reckoning of the sine of an angle and 
the values of angles in RMP. Section-5 is on the arcs 
and sides of an octagon and using the grid-system in 
RMP. Finally, Section-6 is a discussion on reckoning 
and implementing the tilt of the Great Pyramid’s en-
trance passage, using the arithmetic of unit fractions 
and the divisions of the ancient Egyptian cubit rod. 

2. SOME BASIC MATHEMATICAL AND 
GEOMETRIC SYMBOLS IN RMP 

Based on reviewing the hieratic text of the 2/n table 
and the 84 problems in RMP, see a copy of RMP’s hi-
eratic text in (Clagett, 1999, plates#1-105), it appears 
that the geometry of the ancient Egyptian Harpedo-
naptae primarily relies on the concept of the circle, 

where all the geometric problems in RMP are refer-
enced to it, e.g., RMP#53-54&55 (Aboulfotouh, 2019). 
Regarding the scale, RMP#48 and RMP#50 deal with 

the circle that its diameter is 9  units or intervals, see 
e.g., (Gillings, 1982, pp.139-141) & (Clagett, 1999, 
plates#69&72). In RMP#53-54, these 9 units were par-
titioned into 10 parts (Aboulfotouh, 2019). Related to 
this concept, the following mathematical and geomet-
ric symbols were not decoded by the early philolo-
gists; see their early suggested meanings and translit-
erations in the book of Chace et al (1927-1929, Vol. II); 
they did not decipher too the real meanings of some 
hieroglyphic figures (signs) in the daily life.  

In RMP, the circle’s diameter, or part of it, as a side 
of such geometric shape, is symbolized by the hieratic 
letter R  (horizontal plan of a vessel  in hiero-
glyphs); and, the height or the side of the geometric 
shape that is perpendicular to the direction of the di-

ameter R, is symbolized by the letter S  (vertical side-
view of a hoist rope), e.g., RMP#51. Besides, R  as 
a symbol of motion that means to travel (or go to) in 
the ancient Egyptian texts was also used in combina-
tion with a line or an arc to denote a perpendicular-

motion  (e.g., RMP#51), an inclined-motion  (e.g., 

RMP#56), and a curved-motion  (e.g., RMP#40) of 

a point, or rotation around a central pillar , i.e., a 
perimeter (e.g., RMP#56). In RMP, R also implies 
parts or segments of a line or a module (e.g., 
RMP#65).  

Besides, some of the geometric problems in RMP 
deal with both R and S together, such as RMP#51 
(Figure 3a) on how to reckon the area of a right-angle 
triangle, see, e.g., (Gillings, 1982, p.138). In RMP#51, 

the triangle’s base is the diameter R (of 9  units) that 
equals 10 modules, and its height S equals 4 modules, 
where each module  is 1,000  units (i.e., 
100*10). The ancient Egyptian method was multiply-
ing the triangle’s base R of 10 modules by the average 
height, i.e., 2 modules, at the center of the circle, as 
shown in Figure 3b. In RMP#51’s 2nd line, we see the 
hieratic sign of doubling (or repeating once)  that 
looks like number 2. Also, for denoting a segment of 
length, they used the segment or delta δ sign that 

looks like the letter S, e.g., large delta  and small 
delta , which are derived from the shape of one seg-
ment  of length (e.g., RMP#65), and each curve 
marks a linear segment of length as in the shape of the 
dollar sign $. Regarding ratios, they used diverse 
types such as the symbol of the ratio between the 

lengths of 2 lines or 2 arcs  (e.g., RMP#65). Besides, 
they used two types of signs to denote total: the sign 
of total length  with an inclined stroke above the let-
ter t , and the sign of part of a unit of length (or area) 

 with a dot instead of a stroke. In RMP#40, despite 
the total length  of one degree of arc is 100, the early 
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philologists claimed that it deals with the quantity of 
loaves (Clagett, 1999, p.155). Regarding angles, there 
are diverse symbols in RMP such as the angle sign  
(e.g., line-1 in RMP’s prelude & RMP#74); it is longer 

than the sign of 1/8  (Aboulfotouh, 2012). The com-
ing sections include the explanation of other mathe-
matical and geometric symbols in RMP. 

a  
b  

Figure 3. Explaining the geometric figure in RMP#51. a- shows the hieratic text of RMP#51. b- shows the right-angle 
triangle EWA in RMP#51; where EW is the diameter R of a circle and the triangle’s base, WA is the triangle’s height S, 

and the average height CD is the length that repeats R in order to reckon the area of the triangle. 

3. THE ARCHITECTONIC METHOD OF 
THE 2/n TABLE 

Scholars of the history of mathematics have stud-
ied the 2/n table (Figure 2 & 5) in RMP, with the in-
tention to find one equation (or an algorithm) that 
could yield the same shown answers of arithmetic de-
compositions in the table, e.g., (Gillings, 1982, pp.45-
70) & (Abdulaziz, 2008). The reason of this is most 
likely related to viewing RMP as a book of math for 
basic education, and not for the technical applications 
by the Harpedonaptae (land-survey professionals, 
e.g., architects, planners, and surveyors). In RMP, the 
2/n table starts with the title “on line-S’s upright-

length ” (Figure 2), where in the Egyptian math, 

the palm reed  implies a side of a geometric shape, 
i.e., a line (e.g., line-1 in RMP’s prelude & RMP#35). 

As the core subject of RMP is on the “binary   

parts  (of the) unit ”, this table is on re-
subdividing the sum of 2 equal segments from the 
line-S (length S) that contains n equal segments. Be-
cause it is easy to find the answer in case if n is even 
number, the table shows only the cases of odd num-
bers. As examples for the ancient architects, planners, 
and land-surveyors, the table starts from n=3 to 
n=101. For n=3, the title sentence says, “the upright-

length  of 2 parts of the line-segment  of 3”; then, 
the answer, (from the case of 2/5) starts with a sen-

tence that says, “thicknesses’  (Smkt) total , or 

“; since, in the case of 2/3 as a basic fraction, the an-
cient Egyptian Harpedonaptae used it as is without 
showing its decomposition.  

Because RMP was written primarily for the Harpe-
donaptae, the method of decomposition in the 2/n ta-
ble of the line-S (length S) is linked to the divisions of 
the Egyptian cubit rod. As known, the ancient Egyp-
tians used cubits of diverse lengths, e.g., 45cm and 
52.5cm (see Figure 4a), where the largest (52.5cm) is 
the royal cubit of 6 royal palms, i.e., spans (Herodo-
tus, 484-425BC, p.459) that equals the length of 7 
mean-palms. Each mean-palm (7.5cm) equals the 
length of 4 mean-fingers (each is 1.875cm), and the 
mean-finger’s divisions are from 1/2 to 1/16 of the 
mean-finger, see (Aboulfotouh, 2015). Accordingly, 
the divisions (below 1/2) of the Egyptian royal cubit 
rod of 52.5cm are from 1/7 to 1/448 of the royal cubit, 
where 448= 4*7*16. Here, 1/448 of the royal cubit was 
the minimum usable measurement-unit, either in 
drawings or in the field. This implies that for a length 
of one royal fathom οργιά of 112 mean-fingers (4 royal 
cubits, i.e., 210cm), the minimum measurement-unit 
is 1/1792 of a royal fathom. 

Moreover, in architecture practice, dividing a line 
into sub-segments is subject to the condition that their 
widths (thicknesses) could be measured by a meas-
urement rod. As shown in Figure 4b, in order to sub-
divide the line AB into 7 equal parts, the architect can 
draw an auxiliary-line BC equals 7 mean-fingers, per-
pendicular to AB and draw the line CA. Then, in the 
right-angle triangle ABC, drawing lines, parallel to 
the hypotenuse CA, at the interval of each mean-fin-
ger of CB will subdivide AB into 7 equal parts. Be-
sides, AB could be of any length even equal to the 
length of the auxiliary-line BC, i.e., the angle ACB= 
45°. 
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a  b  

Figure 4. The Egyptian cubit rod and how to subdivide a line of any length. a- shows the design of the diverse types of 
Egyptian cubits in the royal cubit rod of 52.5cm (see, Aboulfotouh, 2015). b- shows how to subdivide the line AB (i.e., 
line-S) of any length into seven equal segments, using the auxiliary line CB of 7 mean-fingers, and re-subdividing the 

length BE that equals 2/7 AB (using a 2nd auxiliary line BD= 4 mean-fingers) into BF= ¼ AB, and FE= 1/28 AB. 

Similarly, one can also subdivide each of the 7 
mean-fingers of CB into smaller measurable sub-in-
tervals from 2 to 16 segments, where the lesser the 
number of intervals the shorter the time the subdivid-
ing process takes. For this architectonic purpose, and 
for time saving, one can construct an auxiliary-table 
similar to that in Figure 5 to show all the possible 
numbers of sub-intervals (segments) in the line-S, 
e.g., for the odd numbers from n=3 to n=101, which 
includes 50 rows and the measurable sub-intervals in 
15 columns. For example, in the row of n=7 mean-fin-
gers, the 15 measurable sub-intervals are the results 
of: (2*7), (3*7), (4*7), …, and (16*7); where each repre-
sents possible measurable divisions of the auxiliary 
line BC, either in drawings or in the field. In the 2/n 
table of odd numbers n, the Harpedonaptae re-subdi-
vided the sum of 2 mean-fingers only in the range of 
3.5 royal cubits (i.e., 7 short feet or 98 mean-fingers), 
excluding the base 3 mean-fingers, which seem 
enough to do the various types of reckonings for both 
design and implementation. 

Based on this simple notion, the core architectonic 
idea of the 2/n table in RMP (Figure 5) could be ex-
plained, using the case of the sum of two segments 
that each is 1/7 of the line-S’s length. In RMP, the seg-
ment 2/7 of the line-S was re-subdivided into 2 parts: 
1/4 and 1/28; where 28= 4*7. In practice, and based 
on trial and error, in order to re-subdivide any seg-
ment composed of 2 equal parts, from the line-S (AB), 
into other parts using a measurement rod, the denom-
inator of the first partition mx should be more than 
half n of the line-S (or the auxiliary-line CB). Hence, 
for the numerator 2, it starts from (n+1)/2; i.e., to ap-
proximate the result of n/2 (or n divided by any nu-
merator) to the next upper natural number. Ab-
dulaziz (2008) thought that (n+1)/2 is the last choice, 
which implies there were no single sequential proce-
dure for re-subdividing all the line-segments. Hence, 

(n+1)/2 as the minimum value should be the first 
choice. Then, one can sequentially try other numbers 
above it in order to find the best architectonic answer, 
provided that n/mx should yield only unit fractions 
plus 1, and this is the 1st proviso-i. The best answer 
should agree with other three provisos, where math 
scholars have noticed both the 2nd and 3rd provisos, as 
follows: (2nd proviso-ii) includes the least number of 
partitions as much as possible; (3rd proviso-iii) in-
cludes the lower denominator values as much as pos-
sible (Gillings, 1982, p.49); and (4th proviso-iv) the 
largest denominator is 16 times n. 

Moreover, in all possible answers, the denominator 
of the 1st partition mx (e.g., 4 for 2/7) is the number of 
intervals (mean-fingers) in a 2nd auxiliary line like DB 
in Figure 4b; and the denominators of the other parti-
tions (e.g., 28 for 2/7) are possible sub-intervals in the 
1st auxiliary-line CB, that appear in the corresponding 
row of 15 possibilities in the auxiliary table (Figure 5). 
Since CB may equal the line-S (AB), the number of 
mean-fingers in the 2nd auxiliary-line BD represent 
the alternate length S (alternate-S) for both CB and the 
line-S. For n=7 mean-fingers, the length of BD as al-
ternate-S equals 4 mean-fingers, which equals the 
minimum value (n+1)/2 and agrees with the four pro-
visos that are mentioned herein above. Whereas in 
this answer, the sum of 2 segments from the line-S of 
7 equal segments are re-subdivided into [(7/4)+ 
(7/28)] , i.e., [(1+ 1/2+ 1/4)+ (1/4)]= 2. We can notice 
that the subdividing process (see Figure 4b), actually, 
divides the 2nd segment that equals 1/7 of the line-S 
(AB) into [(1/2+ 1/4)+ 1/4]. Hence, the answers that 
do not yield unit fractions for the second segment 
(1/n) are unsuitable for all cases in the 2/n table; see 
some of these incorrect answers (that do not agree 
with the 1st proviso-i) in the discussions of Gillings 
(1982, pp.52-69). 
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Figure 5. Explaining the architectonic method of the 2/n table in RMP, in 19 columns. c-1 shows the n mean-fingers in 
the line-S, i.e., the denominator under 2; c-2 shows the values of the minimum alternate S or mi that equals [(n+1)/2], i.e., 
the minimum denominator for the 1st partition. c-3 shows the maximum and best alternate S or mx, i.e., the denominator 
of the 1st partition. c-4 to c-18 show the 15 measurable values of subdividing the n mean-fingers in the line-S; denomina-

tors of the other partitions in the answer are colored with dark orange and the values that could be added together in 
one partition are colored with purple. c-19 shows values of the denominators of the 2nd partition, where each equal to 
(and a substitute for) the sum of the two partitions that their denominators are colored with purple. The cells in green 

color in the 1st row show the other possibility of subdividing 2/3 as was noticed by, e.g., Gillings (1982, p.53). 

 
The answers for the rest of the odd numbers of 

equal parts n in the line-S (length S) in RMP’s archi-
tectonic table of 2/n were found in a similar way, and 

in some answers (in case of 3 sub-segments or parti-
tions) the Harpedonaptae added the last two parti-
tions together, in one, in the final answer like the cases 
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of 2/35 and 2/91 (see, Figure 5). This is only in case if 
the denominator of the substitute unit-fraction is not 
more than 2n, and this is the 5th proviso-v. Regarding 
the line-segment 2/35, [(1/70)+ (1/105)]= 1/42; 
where 42 is less than 70; besides, 7 divides both 35 and 
42, i.e., 42 is in the row of n=7 mean-fingers. Accord-
ingly, in this case, 42 is the number of mean-fingers in 
a 3rd auxiliary line for re-subdividing the line segment 
2/35. Alternatively, for shortening the subdividing 
time either in drawings or in the field, since 1/42= 
[(1/35) * (5/6)], one can imagine that the 1st auxiliary 
line of 35 mean-fingers is being re-subdivided into 42 
sub-segments, where each is 5/6 mean-finger. Simi-
larly, regarding the line-segment 2/91, [(1/182)+ 
(1/455)]= 1/130; where 130 is less than 182; besides, 
13 divides both 91 and 130, i.e., 130 is in the row of 
n=13 mean-fingers. The only other (2nd and 3rd) parti-
tions, in case of 3 sub-segments, that could be added 
together in the 2/n table are in the case of the line-
segment 2/95, where [(1/380)+ (1/570)]= 1/228; and 
19 divides both 95 and 228, i.e., 228 is in the row of 
n=19 mean-fingers. Gillings (1982, p.68) noticed the 
possibility of using 1/228 for decomposing 2/95; but, 
in this third case, 228 is more than 2n (i.e., 2*95), which 
does not agree with the 5th proviso-v. 
 

4. THE CALCULATIONS OF SINE AND 
ANGLE VALUE IN RMP 

Because the early philologists had dealt with nearly 
all the geometric symbols in RMP as alphabetical 
signs (Aboulfotouh, 2019), math scholars dealt with 
all the problems in RMP that do not include geometric 
figures as problems outside the realm of geometry. 
For example, they dealt with the eight problems: 
RMP#24-27 and RMP#31-34, in abstract way without 
involving any geometry, e.g., Clagett (1999, p.117& 
pp.141-143) concluded that RMP#24-27 are on finding 
an unknown quantity when an expression involving 
the unknown and fractions of it is specified. In the 

first sentence  in these problems the philolo-
gists transliterated the geometric symbol of a circular 

horizon , i.e., , as a mast sign ; and they translit-
erated the geometric symbols of a right-angle triangle 

in quarter of a circle , i.e., , and half  diameter, 
as signs of a mountain  and a hand , respec-
tively. Besides, the letter R under the symbol of the 
referenced module , i.e., modular (Aboulfotouh, 
2012), and followed by a line  (not the letter N) im-
plies the length R as part of the module, and in case 

of dots  implies as parts of the module.  

 

Figure 6. Translation of the hieratic text of RMP#24. The letters in green color, from “a” to “h”, correspond to the same 
sections’ letters beside the hieratic text*. In “a”, the text in red color is translation of the first sentence in the hieratic 
text that appears in a red box; and “i” shows the geometric figure that corresponds to reckoning the length of AB from 

1/sine the angle φ and the length of the radius CA. 

 

As shown in Figure 6i, the hieratic text of RMP#24 
speaks about the correlation between two lengths: the 
radius CA of a circle that equals 19 units, and the 
height AB of the right-angle triangle ABC, which is the 

subtending side of the angle φ. In RMP#24, AB was 

used as a base-length (or value  X=1), where CA= 
(8/7) AB. This means that CA is composed of 8 mod-
ules that each = 19/8 = 2+ 1/4+ 1/8 units of length, 
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and the 7 modules of AB (value X) are 16+ 1/2+ 1/8 
units of length. Accordingly, sine φ = AB/CA = 7/8= 
1/2+ 1/4+ 1/8, and 1/sine φ= 1+ 1/7. 

Regarding the values of angles in degrees, RMP in-
cludes some examples, e.g., RMP#74 is on the double 

 ratio  between the lengths of two arcs. Because 
philologists thought that the angle symbol  is the 
letter R, math scholars concluded that RMP#74 is also 
about loaves, see its hieratic text and translation in 
(Clagett, 1999, plate-96 & p.177). RMP#74’s text says, 
in a right-angle triangle that its hypotenuse is a diam-
eter of a circle  (it is not the letter K), like the trian-
gle EAW in Figure 6i, if the angle AEW is 5° and the 
length of its arc AW is 1000 units, these 1000 units are 
also the arc length of the angle ACW that equals 10°. 
Besides, if the angle AEW has been doubled, and be-
came 10°, the length of its arc will be 2000 units and 

the related angle ACW will be 20° for the same arc 
length of 2000 units.  

Hence, in RMP, the value of an angle in a circular 
horizon could be implemented in the field with the 
lengths of the radius (hypotenuse) and the subtend-
ing side of that angle, in addition to the spread-out 
length of its arc in measurement units, where each de-
gree of arc represents a module of length. 

5. SUBDIVIDING ARCS AND SIDES OF 
AN OCTAGON IN A GRID-SYSTEM IN 
RMP 

The translation of RMP#65 is another example on 
dealing with the geometric symbols as alphabetical 
signs. Therefore, e.g., Clagett (1999, p.171) concluded 
that RMP#65 is on dividing 100 loaves among 10 men.

  

Figure 7. Translation of the hieratic text of RMP#65. The letters in green color, from “a” to “i”, correspond to the same 
sections’ letters beside the hieratic text*, and both the mathematical and geometric symbols in the text appear in green 

boxes. The text in red color in “a” is translation of the first sentence in the hieratic text* that appears in a red box. j- 
shows the geometric figure of quarter of an octagon. k- shows a grid-system of 130 rectangles for plotting the arc ATE of 
half the octagon’s side AB (in j); it also shows the symbols of: the horizontal intervals (marked H), and the diverse ver-

tical intervals by doubling the length (marked V). 
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This is because in the first sentence of RMP#65 the 
philologists thought that the geometric symbol of 

quarter of an octagon  (ABCNG in Figure 7j) is the 

hieratic form of seated priest  in hieroglyphs. In ad-
dition, they did not decode the geometric symbol of 
the two opposite triangles  that each equals the 
area of 1/16 of an octagon (the triangles ACE and 

FCW in Figure 7j); where the arc  of half the octa-

gon’s side was plotted in a grid-system  of rectan-
gles. They did not decode too other geometric sym-
bols in the text that do mean: the diverse vertical in-

tervals  and the uniform horizontal intervals  of 
the grid-system, correlating a segment to a vertical 

segment , and a segment of the arc’s vertical pro-

jection . In short, RMP#65 is on subdividing the 
arc of half the octagon’s side, where the arc’s vertical 
projection (height) equals 100 units. The arc is subdi-
vided into 10 segments that correspond to the lengths 
of 10 linear segments of half the octagon’s side that 
equals the arc’s height; where each of its three lower 
segments (of the height) is twice each of its upper 
seven segments. 

Hence, in Figure 7k, the vertical line AB is subdi-
vided into 13 equal intervals that each is one module, 
and the line EB is subdivided into ten equal intervals. 
The intervals of the arc’s upper part from T to A cor-
respond to 7 vertical intervals that each one is a verti-
cal module, i.e., each is 7+ 2/3+ 1/39 units of length. 
The intervals of the arc’s lower part, from E to T, cor-
respond to 3 large vertical intervals that each one 
equals two vertical modules, i.e., each is 15+ 1/3+ 
1/16+ 1/78 units of length. Moreover, based on what 
have been shown herein above on RMP#24, in Figure 
7j, if the lengths of CA, AB, and CB are known, the 
values of the vertical intervals of AB and the horizon-
tal intervals of EB could be reckoned in units; and ac-
cordingly, the surveyor can plot the arc (semi circular-
curve) ATE in the field, using a similar grid-system. 
Besides, a mathematician can also reckon the perime-
ter of the circle (as diagonals of rectangles in the grid-
system) and double-check too its reckoned area (in 
RMP#50) of 64 square units for the diameter of 9 
units. Regarding the method in RMP#65, any archi-
tect can notice that the more measurable and diverse 
intervals he can use, the more accurate the length and 
the shape of the arc he can draw and implement in the 
field. 

6. DISCUSSION 

Based on what have been discussed so far, regard-
ing the architectonic method of the 2/n table, the cal-
culations related to the sine of an angle in RMP#24, 
and the idea of the grid-system in RMP#65, herein be-

low, shows how it was possible for the pyramids de-
signers to reckon and implement the tilt α of the Great 
Pyramid’s entrance passage, using the arithmetic of 
unit fractions and the divisions of the ancient Egyp-
tian cubit rod. According to Petrie’s survey (Petrie, 
1883, p.58), the tilt α of the entrance passage of the 
Great Pyramid in Giza Plateau was found equal 26° 
31' 23" ±5". Besides, this author (Aboulfotouh, 2007 & 
2015) showed that the pyramids designers of the 4th 
Dynasty (led by king Suphis-I and his grandson king 
Ratoises or Idris (Manetho, 1940-1964, pp.45-50)) as-
sumed that Earth’s obliquity range is from Oi= ~21° 
40' 23" to Ox= ~24° 18', with a mean Om= ~22° 59' 10". 
They encoded these three data in the design of the lay-
out of the horizon of Giza Pyramids, together with the 
obliquity of time Ot= ~24° 6' (Aboulfotouh, 2014). Us-
ing the equation of M. Bessel (Nallino, 1911, p.270) & 
(The Penny Cyclopedia, 1840, p.495), Earth’s axial tilt 
of ~24° 6' meets the year ~3055BC (Aboulfotouh, 2002, 
2014, & 2015). In modern astronomy, the assumptions 
regarding Earth’s obliquity range are, e.g., from 22.1° 
to 24.5° (Milankovitch, 1941), from 22.61° to 24.23° 
(Laskar, 1986, p.86), or from 22.5° to 24.5° (Meeus, 
1991, p.135); besides, the current Earth’s axial tilt is ~ 
23.44° (in the descending phase). 

Moreover, it was found that the assumed mini-
mum obliquity Oi (~21° 40' 23") is the tilt of the lower 
entrance passage of the 2nd Giza Pyramid, and Oi/Ot = 
cosine the tilt angle of the upper entrance passage of 
that pyramid that equals ~ 25° 56' 4". According to the 
published survey data, these two values were found 
~ 21° 40' and ~25° 55', respectively (Baedeker, 1908, 
p.129). Based on the Google Earth data, the current 
latitude λ of the Great Pyramid of Giza is 29° 58' 45". 
Using Eq.1 (Aboulfotouh, 2007) and the values of α, 
Om, and Oi that are shown herein above, with and 
without the seconds of arc, as RMP#40 shows only the 
dividing of one degree of arc into 60 minutes (Aboul-
fotouh, 2019), the corresponding value of the used lat-
itude λ of the Great Pyramid would be between 30° 
00' & 30° 04'. This implies that the pyramid designer 
most likely used α = 30° ±1' 15", and sine α = ~ ½ in-
stead, and as approximation, of ~ 599/1200 for α = 29° 
58' 45". For reckoning the tilt α of the Great Pyramid’s 
entrance passage, since,  

Sin α = [(sin λ * sin Om)/(1-(Oi
2/Ot

2))1/2] 
And knowing that, 
Ot = ~ 24.10° = ~ (24+ 1/10)° = ~ (241/10)° 
Oi = ~ 21.673° = ~ (21+ 1/2+ 1/6+ 1/156)° = ~ 

(3381/156)° 
Sin Om, i.e., Sin ~ 22.986° = Sin ~ (22+ 1/2+ 1/3+ 

1/8+ 1/36)° = ~ 25/64 
Sin λ, i.e., Sin ~ 30° ±1' 15" = ~ 30° ± (1/60+ 

1/240)° = ~ 1/2 
Then, 
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Sin α = [(1/2) * (25/64)]/[1- ((3381/156)/ 
(241/10))2]1/2 

Sin α = [25/128]/[1- ((5635)/(6266))2]1/2 
Sin α = [25/128]/[1- (31753225/39262756)]1/2 
Sin α = [25/128]/[7509531/39262756]1/2 
 
Using the proposition of Gillings (1982, pp.214-217) 

on how to reckon the square root of a natural number 
from the table of multiplications, they could have 
found that the square root of 7509531 is between 2740 
(square root of 7507600) and 2741 (square root of 
7513081), where the former is close to 7509531. Simi-
larly, the square root of 39262756 is 6266; then, 

Sin α = [25/128]/[2740/6266] 
Sin α = 15665/35072 
 
To break up 15665/35072 into segments of unit-

fractions, with applying the 1st proviso-i; since, 
35072/15665= 2+ 1/5+ 1/26+ 1/2410, the minimum 
denominator mi for the first partition (segment) is 3; 
but 3 will not yield a correct answer; then, 4 as alter-
nate-S (or mx) can decompose 15665/35072 into 9 par-
titions as follows: 

\1  =35072  
\¼   = 8768  
\1/8   = 4384  
\1/16 = 2192  
\1/128 = 274  
\1/1096 = 32  
\1/4384 = 8  
\1/8768 = 4  
\1/17536  = 2 
\1/35072 = 1 
Total  = 15665  
 
Because the denominators of the last 4 unit-frac-

tions (segments) are not measurable (i.e., outside the 
range of n=101 mean-fingers in RMP’s 2/n table), the 
denominator of total sum of the last 5 unit-fractions 
(47/35072) is between the two measurable numbers 
744 and 747 in the auxiliary table (Figure 5). Since 8 
divides both 35072 and 744, then, 

Sin α = 15665/35072 = 1/4 + 1/8+ 1/16 + 1/128 + 
1/744 (approximately) 

 
The architect can then use the opposite of the pro-

cedures in RMP#24 and operate on a radius (hypote-
nuse) of, e.g., 10 royal cubits, in order to get the length 
of the subtending side of the tilt α from the hypote-
nuse of 10 royal cubits, as follows. 

\1  = 10 
\1/4  = 2+ 1/2 
\1/8  = 1+ 1/4 
\1/16 = 1/2+ 1/8 
\1/128 = 1/16+ 1/64 
\1/744 = 1/93+ 1/372 

Total length of the subtending side = 4 + 1/4+ 1/8 
+1/16 + 1/64 + 1/93 + 1/372 royal cubit.  

 
Moreover, similar to what surveyors do today in 

the construction sites, one can draw on a vertical sur-
face, quarter of a circle (like NCE in Figure 6i) that its 
radius equals 10 royal cubits (i.e., 2+ 1/2 royal 
fathom). Then draw a horizontal line at a height 
equals the subtending side of the tilt angle α, i.e., 4+ 
1/4+ 1/8+ 1/16+ 1/64+ 1/93+ 1/372 royal cubit. To 
get the exact lengths of these fractions in the field 
from one royal cubit (28 mean-fingers), the surveyor 
can use two auxiliary lines: the length of the 1st line is 
preferably 8 or 16 mean-fingers for the binary frac-
tions, and the length of the 2nd line is 31 mean-fingers 
for both 1/93 and 1/372. Then, the horizontal line will 
intersect with the arc at a point (like D), whereby the 
inclined line (like CD) from this point to the center of 
the circle represents the tilt α of the entrance passage 
of the Great Pyramid. The arc and the tilt line could 
be easily implemented in the field, in any scale, using 
a grid system like that in RMP#65, particularly if there 
are two tilts, as in the western entrance passage of the 
Bent Pyramid in Dahshure (Aboulfotouh, 2007).  

Using decimal arithmetic, the tilt α of the Great Pyr-
amid’s entrance passage= ~ 26° 30' 59"; and the above 
fractional reckonings have yielded α = ~ 26° 31' 44", 
which is too close to the value in Petrie’s survey: 26° 
31' 23" ±5" (Petrie, 1883, p.58). Here, the difference ra-
tio is ~ 1/2000, which is half the lower value of imple-
mentation tolerance (between 1/000 and 1/500) in 
modern steel structures. In this way, the ancient 
Egyptian Harpdonaptae (e.g., architects and survey-
ors) could have been able to reckon and implement 
the astronomical tilt of the entrance passage of the 
Great Pyramid in Giza plateau. 

7. CONCLUSIONS 

This paper showed that the mathematical infor-
mation and the arithmetic of unit fractions in the so-
called Rhind Mathematical Papyrus (RMP) that was 
copied, from the original source, for the Ancient 
Egyptian Harpedonaptae in circa 1550BC is consistent 
with and suitable for reckoning the tilt of the Great 
Pyramid’s entrance passage in Giza plateau, from the 
retrieved complex equation. Regarding the transla-
tion of the related math text and the reckoning meth-
ods in RMP, the paper explained the following four 
findings for the first time. Firstly, it showed the mean-
ings of some geometric symbols in RMP. Secondly, it 
showed the architectonic method of reckoning the 
2/n table on subdividing the length of two equal line-
segments from the measurable line-S (length S) of n 
equal segments, i.e., mean-fingers. Thirdly, it showed 
that RMP includes problems on angles and the sine of 
angles in right angle triangles, such as RMP#24 and 
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RMP#74. Fourthly, it showed that RMP#65 is on sub-
dividing an arc that its vertical projection is half the 
side of an octagon in a grid-system of rectangles; the 

method that is suitable for plotting any circle, like the 
Giza Pyramids’ horizon, in the field. 
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