
ABSTRACT
Why archaeological artefacts are the way they are? In this paper we try to solve such a

question by investigating the relationship between form and function. We propose new
ways of studying the way behaviour in the past can be asserted on the examination of
archaeological observables in the present. In any case, we take into account that there are
also non-visual features characterizing ancient objects and materials (i.e., compositional
information based on mass spectrometry data, chronological information based on
radioactive decay measurements, etc.). Information that should make us aware of many
functional properties of objects is multidimensional in nature: size, which makes reference
to height, length, depth, weight and mass; shape and form, which make reference to the
geometry of contours and volumes; texture, which refers to the microtopography
(roughness, waviness, and lay) and visual appearance (colour variations, brightness,
reflectivity and transparency) of surfaces; and finally material, meaning the combining of
distinct compositional elements and properties to form a whole. With the exception of
material data, the other relevant aspects for functional reasoning have been traditionally
described in rather ambiguous terms, without taking into account the advantages of
quantitative measurements of shape/form, and texture. Reasoning about the functionality
of archaeological objects recovered at the archaeological site requires a cross-disciplinary
investigation, which may also range from recognition techniques used in computer vision
and robotics to reasoning, representation, and learning methods in artificial intelligence.
The approach we adopt here is to follow current computational theories of object
perception to ameliorate the way archaeology can deal with the explanation of human
behaviour in the past (function) from the analysis of visual and non-visual data, taking
into account that visual appearances and even compositional characteristics only constrain
the way an object may be used, but never fully determine it.

FUNCTIONAL ANALYSIS FROM VISUAL 
AND NON-VISUAL DATA. AN ARTIFICIAL 

INTELLIGENCE APPROACH

J.A. Barceló, V. Moitinho de Almeida

Universitat Autònoma de Barcelona, 

Dept. of Prehistory, Quantitative Archaeology Lab, Edifici B Facultat de Filosofia i Lletres 

08193 Bellaterra (Barcelona), Spain

Corresponding author: juanantonio.barcelo@uab.es
Received: 3/8/2012
Accepted: 21/11/2012

KEYWORDS: Function, Shape, Form, Texture, Material, Artificial Intelligence

Mediterranean Archaeology and Archaeometry, Vol. 12, No 2, pp.273-321
Copyright @ 2012 MAA

Printed in Greece. All rights reserved.



1. INTRODUCTION: ARCHAEOLOGICAL
THEORY, TECHNIQUES AND 
TECHNOLOGY

Computational (or “Artificial”)
intelligence is not just about robots. It is
about understanding the nature of
intelligent thought and action using
computers as experimental devices. It also
deals with the nature of inferential
mechanisms and how computer programs
allow us to discover how we produce
inferences. In this paper we would like to
introduce some of the key points in
Computational Intelligence in Archaeology,
exploring the implications in our discipline,
both theoretically and methodologically of
Machine Learning tools and techniques.
Theoretical and practical aspects of
computer programs which able to
reproduce the same tasks archaeologists do
are reviewed in this paper. The question of
whether it is possible to automate the
archaeological knowledge production is of
both great theoretical interest and
increasing practical importance, because
knowledge and information are being
generated much faster than they can be
effectively analyzed. 

This paper is not only about techniques
and technologies. It is also a theoretical
proposal on archaeological explanation.
Our stating point is the assumption that
archaeological artefacts have specific
physical properties because they were
produced so that they had those charac-
teristics and not some other. In some sense,
it is the same has been suggested by M.
Schiffer on the idea of “Technological
choice” (Schiffer, 2003).  

It has been suggested that there is a
direct constraining relationship –
sometimes even deterministic – between
how a prehistoric artefact looks like in the
present and its past functionality.  That
means that artefacts we see today at the
archaeological site were produced in a
specific way, at least partially, because those

things were intended for some particular
uses: they were tools, or consumed waste
material, or buildings, or containers, or fuel,
etc. Therefore, archaeological items have
different shapes, sizes, and materials. They
also have different textures, and appear at
different places and in different moments.
That is to say, the changes and
modifications in the form, size, texture,
material, and location that nature
experiences as the result of human action
(work) are determined somehow by these
actions (production, use, distribution)
having provoked its existence.

In that sense, the scientific question we
intend to solve can be expressed in the
following terms:

Why the observed material entities have

specific values of size, shape, texture, material,

and why do they appear at some specific spatial

and temporal location?  

The main assumption is that some
percept (archaeological description) should be
related to a causal affirmation about the
causal event (social event, work activity)
having produced the perceived evidence
(archaeological explanation). Artificial
Intelligence computational procedures will
allow us to predict the cause or formation
process of some archaeological entity given
some perceived evidence of the effect of this
causal process. In its most basic sense, then,
the task may be reduced to the problem of
detecting localized key perceptual stimuli or
features, which are unambiguous cues to
appropriate causal events. For instance, a
distinctive use wear texture on the surface
of a lithic tool, and not on others, predicts
that these tools have been used to process
fresh wood, and we infer that at some
moment a group of people was cutting trees
or gathering firewood. Alternatively, we can
consider that the shape of some pottery
vases predicts their past use as containers for
wine, and then we have evidence of wine
production and trade; the composition of
some graves predicts the social personality
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of the individual buried there and hence the
existence of social classes. Here the output
is not the object (trees or firewood, wine,
social elite), but a causal affirmation: cutting
trees or gathering firewood, wine
production and trade, social power and
coercion. 

In the paper we will discuss how archae-
ological explanation occurs when a
perceptual input matches a perceptual
memory containing a description of each
causal event the system is expected to
recognize or identify (Figure 1).

2. WHY ARCHAEOLOGICAL 
ARTEFACTS ARE THE WAY 
THEY ARE?

A possible answer to this question would
be: because objects have a distinctive
appearance for the sake of their proper

functioning. The meaning of functioning is
always related with the idea of using. An
object’s use can be defined as the exertion of
control over a freely manipulable external
object with the specific intention of: (1)
altering the physical properties of another
object, substance, surface or medium (the
target, which may be the object user or
another organism) via a dynamic
mechanical interaction, or (2) mediating the
flow of information between the tool user
and the environment or other organisms in
the environment (St. Amant and Horton
2008; see also Beck’s 1980, McGrew 1993,
Amant 2002, Bicici and Amant 2003). 

According to Daniel Dennett (1987), the
“function” of a certain item is (or should be)
what it is best able to do (or be), given its
physical constitution and its context. In
accordance with Bonnet (1992), a function is
taken as an activity, which can be
performed by an object. Therefore, we can
consider that the object’s activity is in fact
its operating mode or behaviour
specification. Balachandran and Gero (1990)
prefer to distinguish between function,
structure, and behaviour as three classes of
properties of a design object: function
properties would dictate the object’s
intended purpose and requirements;
structure properties would represent the
description of the whole and its
constituents; while the behaviour properties
would spell out how the structure of the
object achieves its function. For example,
considering the main physical features of a
cup, we can assign different functions to
each part: the flat bottom is for standing the
cup on a surface; the handle is for grasping
the cup when lifting; the inside is for
containing the liquid; the rim is for
supporting the cup against the lips when
drinking. The assignment of causal
interactions to features defines the object as a
cup (Leyton 1992, p. 163). We may argue,
then, that the function of a cup is specified
in terms of the actions applied to it, e.g.,
standing up, lifting, etc., and in terms of the
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Figure 1 A model for an archaeological recognition
system. The model database contains all the models
known to the system. The information in the model

database depends on the approach used for the
recognition. It can vary from a qualitative or
functional description, to precise parametric

equations. The feature detector applies operators to
the input, and identifies locations of features that help

in forming causal event hypotheses. Using the
detected features in the input, the hypothesizer

assigns likelihoods to those events that may have
produced the observed evidence. The knowledge base
is organized using some type of indexing scheme, to

facilitate elimination of unlikely causal events
candidates from possible consideration. The verifier

then uses causal theories to verify the hypotheses and
refines the likelihood of explanations. The system

then selects the causal event with the highest
likelihood, based on all the evidence, as the correct

event.



resulting actions that the cup applies back
to the environment, e.g., conveying the
liquid upward.  All that means that we are
describing the cup in terms of five
components:
(1) INPUTS: e.g., standing up, lifting, etc.
(2) OUTPUTS: e.g., conveying liquid
(3) STATES: physical characteristics of the
cup, e.g., its shape
(4) FIRST CAUSAL RELATIONSHIP:
e.g., lifting (input) acts on shape (state) →
conveying liquid (output)
(5) SECOND CAUSAL RELATIONSHIP:
e.g., lifting (input) acts on shape (state) →
shape does not change (dynamics: next
state).

The above definition of function would
seem correct only in the case of objects like
huts or hats, or any other tool-like things,
which have been made according to a
clearly defined purpose (Wright, 1973,
Millikan, 1999; Neander, 1991). Such
definition would be also effective when
dealing with objects with symbolic use,
given that even “style” has a “function”
(Wobst 1977). 

The problem is that, although functional
behaviours (symbolic or nonsymbolic) seem
to be goal-directed activities, sometimes
desirable ends are achieved through the
incidental or even accidental use of an object,
and consequently the use of archaeological
artefacts can also be opportunistic. Objects can
be used for purposes not intended by their
designers and/or manufacturers (St. Amant
2002, Bicici and St. Amant 2003). In this way,
someone may insist in the apparent
difference between things that people did of
their own free will, from the things they did
because they had to (Sackett, 1985). A
presumably nonfunctional behaviour,
“stylistic” in Sackett’s terms – a wrong term
for a correct concept in our view – would
denote an action that does not have
detectable intended purpose. The closer an
action is un-intended, the less likely it is to
be functional, i.e., patterned by rational
choice. Binford (1989, 52-53) has considered

this functional/ nonfunctional dichotomy as
an opposition between conscious, explicitly-
rational, problem-solving behaviour, on the
one hand, and unconscious, rote-learned
motor habits, and socially or symbolically-
motivated behaviour, on the other. The
distinction between “functional” and
“nonfunctional” seems to be established
between material consequences that are
subject to causal intentional explanation, and
material consequences that are not (Dunnell,
1978). 

To avoid the apparent many functions of
the very word function, we prefer to insist
in the idea of functional analysis – as the
analysis of the object’s disposition to
contribute causally to the output capacity of
a complex containing system of social
actions (Cummins 1975, 2000, 2002) –, rather
than in a single substantive with a single
meaning. This includes the use of objects
used in a direct way with a material
purpose (instruments), and objects used in
a metaphorical way with an ideological
intention (symbols). The only we would
need to take into account is then the object’s
role in a human goal-directed activity.

We suggest that we should attribute
functions to archaeological objects because and
only because it can be proved that they may
exhibit certain behaviours under the
appropriate conditions: two objects will be
functionally equivalent (or analogous) if
they do the same (or similar) things in the
same (or similar) systems in the same (or
similar) environment. The key is in the
emphasis on the word “do”. No other
features of the archaeological materials are
relevant, other than the fact that they do the
same things under certain conditions, which
is to say that it is their behaviour that is
important. What we, archaeologists, charac-
teristically perceive are objects and changes
in objects, and behaviours are reifications of
these. Thus, an archaeological entity should
be explained by the particular causal
structure in which it is supposed to
participate. The knowledge of the function
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of some perceived material element should
reflect the causal interactions that someone
has, or can potentially have, with needs,
goals, and products in the course of using
such elements. 

According to such assumptions, if one
wants to produce a specific tool that will be
used in a specific way, designers/
manufacturers cannot violate the laws of
physics, which might prevent using the
object in such way, or facilitate its use in
another way. We should consider how
physical properties (size, shape, texture,
visual appearance, raw material, etc.) will
affect what the object did in the past; its
overall form (for holding or halting); the
edge angle where cutting, scraping, or
holding was important; the duration of its
use, how specialized the working parts
needed to be; whether it was at all desirable
to combine two or more functions in the
same tool; how reliable the tool needed to be;
and how easily repaired or resharpened it
needed to be (Hayden 1998). Furthermore,
one also has to determine the history of
social actions having used that tool for
different purposes at different circumstances
(Nagel 1961, Boorse 1976, 2002, Adams 1979,
Cummins 1975, 2000, 2002).

According to Nagel (1961), a thing or
event has to be explained in terms of the
function it performs in some larger whole,
or the role it plays in bringing something
about. Functional explanation focuses
attention on the culminations and end
products of specific processes. Our
approach equates function with causal links
or goal-directedness, rather than logical
purpose. What underlies this idea of
function is essentially historical in character.
Humans possess a large amount of
functionally relevant knowledge for any
material category, which includes:

a) The object’s design history;

b) The object’s physical structure and the
physical settings in which it is found;

c) The events that arise during the object’s
use, such as agent’s actions, object’s
behaviours, and outcomes.
Consequently, an object’s function

emerges from a relational system that links
its physical structure (i.e., non-visual and
visual data, which include shape, texture
and material) with its use, background
settings, and design history (Kitamura and
Mizogouchi, 1999; Chaigneau et al., 2004).

FUNCTIONALITY FROM SHAPE

Archaeology has been traditionally
considered as a quintessentially visual
discipline (Shelley 1996). Among all features
that describe archaeological evidences, some
of them, the most important for the
recognition and/or the discovery of the way
an item was produced and or used in the
past, have something to do with what we
have been trained to “see” in the archae-
ological record. Unfortunately, there is no
universal method of searching for
informative visual marks. They can be
extracted from any archaeological record
almost ad infinitum, but one usually fails to
formalize the significant criterion for what
is intrinsically “visual”. An additional
difficulty is that different visual features will
almost definitely be of importance for
different explanations. 

The insufficiency and lack of a clear
consensus on the traditional methods of
visual description – mostly based on spoken
language, descriptive, ambiguous,
subjective and qualitative – have invariably
led to rhetoric, ambiguous and subjective
interpretations of its functions. It is thus
strongly advisable to systematize, formalize
and standardize methods and procedures
more objective, precise, mathematical and
quantitative, and whenever possible
automated (Barceló, 2009; Moitinho and
Barceló, 2011). If visual features – which
include shape description – of archae-
ological observables are not formalized,
then possibilities of discovering the
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function the artefact had in the past is
compromised.

Traditionally, archaeologists have
referred to diameters and heights when they
spoke about shape. The conventional
method for capturing artefact’s morphology
has been to take linear measurements with
calipers at fixed loci along an arbitrary line
of maximum bilateral symmetry, generally
defined as length. Such linear measurements,
however, are absolute quantities reflecting
only size. No geometric information is
provided on the relative position of the
various breadth and thickness
measurements. Accordingly, the variables
sampled constitute an abstract collection of
relative size measurements. There is no
assurance that two archaeological artefacts
with identical size values at different parts of
their extension will have similar shapes. The
shape of every square, for example, is the
same whether it is a large square or a small
square. 

The attempts at formally defining the
term shape are often based on the idea of any
“single”, “distinct”, “whole” or “united”
visual entity. In other words, it is the
structure of a localized field constructed
“around” an object (Koenderink, 1990; Small
1996; Costa and Cesar, 2001; Leymarie, 2011).
Therefore, the shape of an object located in
some space could be expressed in terms of
the geometrical description of the part of that
space occupied by the object, as determined
by its external boundary – abstracting from
location and orientation in space, size, and
other properties such as colour, content, and
material composition (Johansson, 2008, 2011;
Rovetto, 2011). Consequently, the idea of
shape should be understood as a process by
which our mind “builds” a definition of
some observable input (Barceló, 2010a;
Leymarie, 2011). Within this paradigm, the
shape of things appears to be a physical
representation of the content of information
associated with each thing. The word
“information” itself comes from the Latin “in
forma” meaning “in shape” and implies that

“information” is what you need to know in
order to put things into a proper shape
(Gammaitoni 2011).

To completely characterize the shape of
an object means to be able to re-create the
whole geometry of the same object, using
only the measurements made over its
interfacial boundaries. However, even
though in some cases a set of measurements
may satisfy the archival property, it may as
well fall in a redundant set of measures
(Read 2007).

In the revealling new foundations to
generative geometry proposed by Michael
Leyton (1992, 2005), “shape” is defined by
the sequence of operations needed to create
the object’s boundary. One should recover
from that shape, the history of
embryological development and
subsequent growth, which the body
underwent. The shape is full of the object’s
history. For instance, the shape of a tree
gives us information about how it grew. A
scar on a person’s face tells us that, in the
past, the surface of the skin was cut. A crack
in a vase informs us that, in the past, the
vase underwent some impact; i.e., this
information is retrievable from the crack. In
the same way, the vertical height of the vase
is information about the past process that
pushed the clay upwards; and the outline of
the vase, curving in and out, is information
of the past changing pressure that occurred
in the potter’s hands. Therefore, the crack is
a memory store of hitting which sits on the
vase which is a memory store of clay-
manipulation. According to the Leyton’s
foundations for geometry, every feature of
the world is a memory store. The recovery
of such a memory can be carried out by
simple procedure of partitioning the
presented situation into its asymmetries
and symmetries and following some
inference rules to understand why an
originally symmetric formation ended in
asymmetry.

Most of the ways of representing shape
in terms of the object physical boundaries
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have been developed in terms of extracted
2D contours or silhouettes (see Barceló
2010a for an overview of such methods). For
some time, computer specialists thought
that it would be very easy to adapt linear
contour (Nelson and Selinger, 1998);
landmark (Dryden and Mardia 1998;
Adams et al. 2004; Slice. 2007; Elewa, 2010),
or decompositional (Biederman, 1987, 1995;
Edelman, 1994; Palmer, 1999; Edelman and
Intrator, 2000, 2002; Binford and Levitt 2003;
Jang et al. 2006; Cao et al. 2008) approaches
of shape to the analysis of form (Ingram and
Hudson, 1994), that is, 3D, but modern
research has proved that we need much
more than a mere adaptation. The third
dimension is much more important than
many archaeologists tend to think, it isn´t
just a matter of realism in the representation
of enhanced aesthetic qualities. In fact, it
opens up new possibilities for incorporating
movement and physic issues into a model,

in the effort to understand the function of
archaeological artefacts.

Fortunately for us, technology has
produced a diversity of 3D scanner devices.
Such “instrumental-observers” are able to
capture the form of an archaeological object.
The generated output data is composed by
a point cloud with thousands of three-
dimensional Cartesian coordinates –
besides xyz coordinates, each point can also
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Figure 2 Fragmented wooden artefact (D05-
KE90-7), from the Neolithic lakeside site of La

Draga (Banyoles, Catalonia). It has been
functionally analyzed as a bow. From top to

bottom: Drawings and Photograph (Bosch 2006);
3D digital model, with original triangular mesh
decimated; Basic geometric data of the original

3D digital model. 

Figure 3 Detail of the 3D digital model of the archaeological artefact D05-KE90-7. To capture the
point cloud, we used a non-contact close-range 3D structured light scanner (SmartSCAN3D Duo
System, Breukmann), with a 150 mm FOV set of lenses (x,y resolution: 90 µm, according to the

manufacturer). From left to right: 2D contour line (shape); 3D point cloud, 3D triangular mesh, 3D
mesh with surface, 3D faceted surface (form). 



have colour, normal vector, or image texture
information –, which describe the overall
scanned surfaces of an object. However,
working with hundreds of thousands or
even millions of points is difficult, because
surfaces cannot be distinguished and the
meaningful information that can be
extracted may seem quite limited, and we
have already suggested that shape/form is
basically information. This leads us to
digitally reconstruct the surface of the object
from acquired coordinates, which can be
done by converting the point cloud into a
3D polygonal mesh, and then to a 3D
surface model (Figures 2 and 3) .

The resulting surface models are with no
doubt quite impressive, and contain most
relevant geometric information we will
need to calculate the particular relationship
between form and function. However, we
should consider these surface models as an
intermediate step in the process of
quantifying form, because they cannot be
used directly for explanatory purposes. The
relevant information should be extracted
before being used for inferring the object’s
function in the past.

It has been argued that neither shape nor
form can be fully quantified (Johansson
2008, 2011); however, we consider that an
approach towards the statistical analysis of
shapes and forms is technically possible and
even recommendable to archaeologists. In
other words, even in the case the object’s
shape or form cannot be reduced to a single
measure, shape-and-form variability can be
effectively estimated and even explained in
functional terms.

In this vein, we should extract a number
of different shape/form descriptors from the
automatically built 3D model. That means
integrating some parameters related with
the 3D geometry of the objects’ interfacial
boundaries in a set of relational coefficients.
The fundamental role of such composite
measures is that they allow evaluating
archaeological observables from a
population as similar or different. 

This approach has some tradition in 2D
shape analysis. Russ (2002) gives a list of
some of them, namely:
1) Elongation. Perhaps the simplest shape

index. It uses the ratio between length
and width to measure the elongation of
an object.

2) roundness. It measures the degree to
which an object resembles a circle.

In the equation, p is the perimeter, and
Area is a measure of the surface of the object.
The roundness calculation is constructed so
that the value of a circle equals 1, while
departures from a circle result in values less
than 1. For instance, an isosceles triangle
has a roundness value of approximately
0.492.
3) Shape Factor (or Formfactor). It is similar

to roundness, but emphasizes the
configuration of the perimeter rather
than the length relative to object area. It
is based on the mathematical fact that a
circle, compared to all other two-
dimensional shapes (regular or
irregular), has the smallest perimeter
relative to its area. Since every object has
a perimeter length and an area, this
mathematical relationship can be used to
quantify the degree to which an object's
perimeter departs from that of a smooth
circle, resulting in a value less than 1.
Squares are approximately 0.78. A thin
thread-like object would have the lowest
shape factor approaching 0.

In the equation, p is the perimeter, and
Area is a measure of the surface of the
object. Notice that shape factor varies with
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surface irregularities, but not with overall
elongation.
4) Quadrature. The degree of quadrature of

a shape, where 1 is a square and 0.8 an
isosceles triangle. This index is expressed
by:

In the equation, p is the perimeter, and
Area is a measure of the surface of the
object.

These shape indices allow the
integration of all parameters related with
the 2D geometry of the objects’ contour or
silhouette into single measurements, in a
way that a statistical comparison of such
parameters allows a complete description of
visual variability in a population of material
evidences (Barceló 2010a). Accordingly, the
form of the archaeological artefact is
defined as an n-dimensional vector space
(where n represents the number of shape
coefficients), and whose axes represent
global shape-and-form parameters, or
further vector spaces denoting different
domains of the same idea of “shape”.

Unfortunately, many of the above
coefficients cannot be directly generalized
to 3D (Lian et al. 2010), and we have already
argued the relevance of a proper 3D
analysis. Up to now, just a few global form
descriptors with direct meanings for 3D
models have been proposed, where each of
them describes 3D objects in a quite
different manner, thereby providing new
and independent information. A
compactness coefficient for example, may
describe:
1) The extent to which a 3D object is

spherical (Wadell, 1935; Asahina, 2011).
Sphericity (ψ) is expressed by the
equation:

Where Vp is volume of the archae-
ological object or building structure and Ap
is its surface area. The sphericity of a sphere
is 1 and, by the isoperimetric inequality, any
form which is not a sphere will have
sphericity less than 1.
2) The extent to which a 3D object is a cube

(Martinez-Ortiz et al.  2009). The
cubeness Cd (S) of an observed entity is
the ratio of the surface area A(S) of a cube
with the same volume as the given entity
to the surface area of the entity:

If the form is subdivided into faces, then
n(S) represents the number of different
faces. The cubeness of a cube is 1, thus any
form which is not a cube will have cubeness
less than 1.

Likewise, similar indices can be
calculated for other forms (e.g., cylinders,
ellipsoids).

Bribiesca (2000) has proposed a
compactness measure which corresponds to
the sum of the contact surface areas of the
face-connected 3D form primitives. To
measure rectilinearity, Lian et al. (2010) have
used a genetic algorithm, which is an
optimization technique. Kazhdan et al.,
(2003) have presented a 3D objects’ reflective
symmetry descriptor as a 2D function
associating a measurement of reflective
symmetry to every plane through the
model’s centroid. In addition, several other
numerical methods to compute form
descriptors have been proposed. Among
them are: Volume-area ratio, Statistical
moments, and Fourier transform coefficients
(Zhang and Chen 2001a, 2001b), Bounding
box (Paquet et al., 2000), Convex-hull based
coefficients like hull crumbliness, hull
packing, and hull compactness (Corney et
al., 2002), 3D shape histograms, where the
space in which the objects reside is
decomposed, i.e., a complete and disjoint
decomposition into cells which correspond
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to the bins of the histograms  (Ankerst et al.
1999), a shape distribution sampled from a
shape function measuring global geometric
properties of the object (Osada et al. 2002),
spherical harmonic descriptor (Kazhdan et
al. 2003), skeleton based shape descriptor
(Sundar et al. 2003), and other view-based
methods used to extract 2D descriptors – e.g.
3D Zernike Moments (Novotni and R. Klein,
2003), Fourier coefficient, elevation
descriptor, etc. – from the silhouettes or
depth buffers captured around 3D models
(Chen et al. 2003; Chaouch and Verroust-
Blondet, 2006, 2007), 3D Spherical
Harmonics (Jayanti, 2009), Ellipsoidal
Harmonics (Mademlis et al. 2009), 3D-Shape
Index (Marwan et al, 2004), Cone-Curvature
descriptor (Adan et al, 2008), 3D Hough
Transform, Canonical 3D Hough Transform
Descriptor (C3DHTD) (Zaharia and Prêteux
2003), and 3D Shape Histogram-Solid Angle
Histogram (Jayanti, 2009).

However, since no single descriptor
outperforms others in all situations (Shilane
et al. 2004), a well suited approach is to
construct composite form descriptors (Vranić
2005; Ohbuchi and Hata, 2006; Laga et al.
2006; Gal et al. 2007; Ruggeri and Saupe
2008).

4. FUNCTIONALITY FROM TEXTURE

Texture is usually defined as those
attributes of an object’s surface having either
visual or tactile variety, and defining the
appearance of the surface (Tuceryan and Jain
1998, Fleming 1999, Mirmehdi, Xie and Suri
2008, Barceló 2009, Engler and Randle 2009).
A texture perceived by humans is a
visualization of complex patterns composed
of spatially organized, repeated subpatterns,
which have a characteristic, somewhat
uniform appearance (Szczypinski et al. 2009).
It is useful to distinguish between visual

appearance (colour variations, brightness,
reflectivity and transparency), from tactile

appearance, which refers to microtopography
(roughness, waviness, and lay).

Among visual irregularities, colour
variations can be measured and described
in an objective and precise way. By
assigning a specific numeric value to each
colour property, differences or distances
between samples can be consistently
compared (Wyszeki and Stiles 1982,
Billmeyer and Saltzman 1981, MacAdam
1985, Hunter and Harold 1987, Hunt and
Pointer 2011). Just to mention some of the
most followed international standards are
the ISO/CIE (International Standard
Organization/ Commission Internationale de
l’Eclairage) and the ASTM (American Society
for Testing and Materials) E12.04 on Colour
and Appearance Analysis, E12.06 on Image
Based Colour Measurement, E12.07 on
Colour Order Systems, E12.11 on Visual
Methods, and E12.14 on Multidimensional
Characterization of Appearance).

Colour measurement systems can be
divided in:
• Colorimeters: measure tristimulus data,

that is, lightness (value), chromaticity
(saturation), and hue (rainbow or
spectrum of colours) of a sample colour.
The colour’s numeric value is then
visually determined using a specific
three-dimensional colour model or three-
valued system. Among the most widely
used colour space graphs for defining and
mathematically expressing colour
attributes are the CIE’s Yxy, established in
1931; the 1976 CIELAB, L*a*b* colour
space; the 1994 L*C*h; and the
CIEDE2000. Other three-dimensional
colour spaces, such as CIELUV, Hunter
Lab, and the Munsell colour notation
system, also are in use. The disadvantage
of the measured data is that they are fully
dependent upon viewing conditions
(viewer or image capture device, type of
lighting, object´s microtopography/
finishing). These instruments provide
measurements that correlate with human
eye-brain perception (psychophysical),
which can be a disadvantage in some
archaeological analysis.

282 J.A. BArCELO et al



• Spectrophotometers: measure spectral
data, that is to say, the amount of spectral
reflectance, transmitting, and/or emitting
properties of a sample colour at each
wavelength on the visible spectrum
continuum, without interpretation by a
human. The measured data has the
advantage of not being dependent upon
light, object microtopography/finishing,
and viewer. By gathering such complete
colour information it provides the most
accurate description of the actual
coloured object. Furthermore, it is able to
indirectly calculate colorimetric
information.

Briefly speaking, tactile variation can be
understood as the irregularities that emerge
when considering coarseness, roughness,
waviness, lay, smoothness, polish, burnish,
and bumpiness. At some level, this
microvariation may be an intrinsic feature
of an individualized surface, its topography.
In a 3D approach, we basically perceive
surface geometric irregularities in terms of
planes variations or curvature variability
(angle and distribution) (Figure 4).

In the same way as when using shape-
and-form cues to infer functionality, texture
data can be also  used to recognize function.
This is usually called a texture classification
problem, whose goal involves deciding to
which functional category a geometric
model of the observed texture variation
belongs. In order to accomplish this, we
need to have prior knowledge of the
functions to be recognized, to delete all
texture features observed in the object that
were not related with labour induced
variations. In fact this is a popular approach
in archaeology. When a surface interacts
with another surface, higher points may
have more intense effects (higher energy)
than lower areas. When a surface is plane
and uniform, all surface points have the
same interfacial contribution, that is, all
points have the same potential to induce
changes on a contacting surface (energy).
Major types of wear include abrasion,

friction (adhesion and cohesion), erosion,
and corrosion. By replicating lithic tools and
performing some activity (e.g., cutting
green wood) for a certain period of time, we
will be able to test the relationship between
kinematics, worked material and observed
use-wear on the surface of the tool
(Semenov, 1964; Hayden ,1979; Anderson,
1981; Grace, 1989; Clemente et al, 2002;
González and Ibáñez, 2003; Longo et al.,
2009).

In archaeology, texture has been
traditionally measured in terms of
transforming grey-level image information
into a map of bumps within a surface.
Texture analysis was then essentially the
operation of detecting significant local
changes among luminance values in a
visually perceived scene and its translation
into a geometric language. Such an
approach has produced good results in
archaeology (Pĳoan-Lopez, 2008; Barceló
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Figure 4 From top to bottom: 3D digital surface
model of the archaeological artefact D05-KE90-7;

Detail of the 3D digital surfaces’ topography
(detail of red dashed circle area in Fig. 5);

Analysis of the 3D digital surfaces’ curvatures. 



2009), but it is no more tenable because it is
still based on the probably wrong
assumption that digital pictures (coded in
pixels) are surrogates of real objects.

Nowadays, the high resolution precision
of many modern 3D scanners allows
accurate measurements of tiny details of
complex microstructures. Some non-contact
close-range 3D scanners can capture surface
data points with less than 50 microns (0,05
mm) between adjacent points. In addition,
confocal optical microscopy, interferometric
microscope, optical focus sensing,
Nomarski differential profiler, scanning
electron microscope (SEM) stereoscopy, just
to name some other non-contact
instruments, can produce 3D
representations of surface irregularities
with even higher detail, and thus allowing
finer measurements. In this way, instead of
using grey-level values measured at pixel
resolution, we have proper measurements
of depth and height at well localized points
within the surface (Stytz and Parrott, 1993,
Swan and Garraty, 1995; Lark 1996, van der

Sanden and Hoekman, 2005) (Fig. 5).
As in shape and form, we do not have

enough with a simple spatial invariant
measurement of heights and depths at the
micro-level of a single surface. Since texture
should be regarded as a similarity grouping
in the visual and tactile constituents of a
surface, the idea would be to decompose
the analyzed surface into regions which
differ in the statistical variability of their
constitutive features. 

The textural character of the surface
usually depends on the spatial size of texture
primitives, in such a way that coarse texture
can be decomposed in large areas, while
small areas give fine texture surfaces. Leung
and Malik (2001) have developed further this
decomposition approach by building a
small, finite vocabulary of microstructures,
which they call 3D textons. Once a universal
vocabulary of 3D primitive components of
texture is defined, the surface of any material
such as marble, concrete, leather, or rug can
be represented as a spatial arrangement
(perhaps stochastic) of symbols from this
vocabulary (Cula and Dana 2004; Varma and
Zisserman 2005; Dong and Chantler, 2005).
For an archaeological application, see Beyries
et al. (1988).

The same way shape/form information
can be coded into specific indices, the
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Figure 5 From top to bottom: Detail of the 3D
digital surface topography of the archae-

ological artefact D05-KE90-7; Surface section
(blue line) basic measurements: width and

height, angle, minimum and maximum radius.
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Table 1. 3D Areal and 2D Profile parameters, for measuring the microtopography of a surface
(Whitehouse 2002, Varadi et al. 2004, Masad et al. 2007, ASME 2010). (1) Functional - Index family
and Volume family: for Bearing and Fluid Retention Properties. (2) Nonmandatory Appendix D,

from International Standards and Parameters.



texture of an archaeological artefact can be
defined as an n-dimensional vector space,
whose axes represent global microto-
pographic and/or visual parameters.
Several works have been performed in
particle analysis, and there are not relevant
archaeological applications, in spite of the
interest of the approach. 

In this vein, we propose the following
3D areal and 2D profile parameters to
measure the texture of archaeological
objects (Table 1) (for details on technical
procedures see Whitehouse 2002; Varadi et
al. 2004; Masad et al. 2007; ASME 2010).

FUNCTIONALITY FROM MATERIAL 

Visual features are not enough for an
exhaustive documentation of archaeological
material. Among non-visual data we can
mention compositional data, which are
most frequently understood as the
enumeration of basic or fundamental
elements and properties defining a material.
Although in the historical beginnings of the
discipline, the enumeration of the
substances an archaeological object was
made of was regarded as a visual inference
based on the scholar previous experience
(in terms of the “colour” or texture of
different materials like “pottery”, “stone”,
“bone”), nowadays, mineralogical and
physico-chemical compositions are
measured objectively using appropriate
instruments: x-ray and -Raman
spectrometry, neutron activation analysis
for elemental composition information,
neutron scattering for revealing alloys and
organic material; particle accelerator, Laser
Induced Breakdown Spectroscopy (LIBS).
Archaeometry provides an unquestionable
valuable source of data for inferring
possible functional behaviours of ancient
and prehistoric artefacts. Nevertheless, we
should take into account that the material
components of any archaeological object
can be defined and delimited at a variety of
scales (e.g., atomic, molecular, cellular,

macroscopically), what prevents taking
compositions as magnitudes. Instead, we
have different compositions at different
analytical scales.

Archaeometric data have proved
difficult to handle statistically, because of
the awkward constraint that compositions
are not mere lists of substances but multi-
component vectors, where the addition of
components is a constant in the population
under study. Compositional vectors should
fulfil two conditions:
A) The components should be “generic”, in

the sense that all objects can be described
as different combinations of the same
components. For instance, the chemical
components of a knife can be
decomposed in steel and wood; the
components of a pottery vase can be
decomposed into Al, Mg, Fe , Ti, Mn, Cr,
Ca, Na, Ni.

B) The components should be expressed as
a proportion of the total sum of
components, which defines the
composition of the entity. Compositions
should be expressed as vectors of data,
which sum up to a constant, usually
proportions or percentages. To say that
there is steel and wood in this object, is
not a true decomposition of the knife.
Instead, we have to say that 13% of the
object consists in wood for the grip, and
the remaining 87% is composed of steel.
In this case the components sum a
constant (100), and composition is
measured against this total.
This special characteristic of

compositional data means that the variables
involved in the study occur in constrained
space defined by the simplex, a restricted
part of a mathematical space, what imply
dangers that may befall the analyst who
attempts to interpret correlations between
ratios whose numerators and denominators
contain common parts. It is important for
archaeologists to be aware that the usual
multivariate statistical techniques are not
applicable to constrained data (Aitchison,
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1986, 1994, 1997, Aitchison and Barceló-
Vidal 2002, Barceló-Vidal et al. 2001,
Billheimer et al. 1998).

In any case, what we seek it is not only
an enumeration of the substances (at the
atomic, molecular or composite level) the
archaeological object is made of, but a
specific combination of non-visual features
– a “property profile” (Ashby 2005) – that
allows to make inferences about the past
function of the artefact. These additional
properties make reference to the biological,
chemical, physical, or mechanical
constraints any substance may experiment
(Markwardt 1930, 1935; Winandy 1994;
Ashby 2005; FPL 2010; Siegismund and
Snethlage 2011).
5.1 Atomic properties – are defined by the

chemical and physical reaction of each
substance at the atomic level. They
determine how an object defined by a
particular compositional vector will
react in different circumstances.
Environmental resistances, such as
flammability and corrosion or oxidation,
are examples of these.

5.2 Molecular properties – are defined by
the chemical and physical reaction of
each substance at the molecular level,
that is to say, the consequences of
molecular structure on the capabilities
of the raw material. They also determine
how an object defined by a particular
compositional vector will react in
different circumstances. Solubility can
be among the properties at this level

5.3 Mineralogical properties – are defined
by the chemical and physical reaction of
each material beyond the molecular level.
Some archaeological objects were made
of different mineral components, or the
production mechanism (cooking,
alloying) generated new reactive
minerals as a consequence of chemical
and physical transformation. They also
determine how an object defined by a
particular compositional vector will react
in different circumstances.

5.4 Biological properties – are also defined
by the chemical and physical reaction of
each material beyond the molecular
level. Some archaeological objects were
made of raw materials from the living
world: bone, wood, vegetal fibre,
leather, etc. For instance, in the case of
prehistoric wooden artefacts, chemical
constraints apply, but also those derived
from the cellular or anatomical
structure, which in their turn may
determine mechanical properties and,
thus, possible behaviours of artefacts.

5.5 Physical properties – are those
properties characterizing static states
and whose particular values can be
determined without changing the
identity of the substance, but are a
consequence of constraints at lower
levels. Among the physical properties,
we can mention density (ratio of its mass
per unit volume, kg/m3), moisture
content (the ratio of the mass of water
contained in a sample to the mass of the
same sample dried, usually expressed as
a percentage), permeability (the moisture-
excluding effectveness), and shrinkage
(meaning here the degree of reduction
or downsizing. It can be affected by
several variables, such as density, rate of
drying, or even the size and form of the
object). Physical constraints can be
expressed in terms of thermal or electric
properties of materials.

5.5a Thermal properties – they include
thermal conductivity (e.g. heat exchange
between the inner and outer
environment of a structure), thermal
diffusivity, thermal expansion coefficient
(this can be highly important when
analyzing wooden artefacts, in order to
reason about drying processes, namely,
swelling, shrinkage, and flexibility,
leading to intentional form deformation,
or hardening with heat), thermal shock
resistance, specific heat, melting point, creep
resistance. Many materials become
weaker at high temperatures. Materials
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which retain their strength at high
temperatures, called refractory
materials are useful for many purposes.
For example, glass-ceramics have
become extremely useful for cooking, as
they exhibit excellent mechanical
properties and can sustain repeated and
quick temperature changes up to 1000
°C. 

5.5b Electric Properties – notably, resistivity
and conductivity.

As a consequence of atomic, molecular,
mineralogical, biological, and physical
properties of their particular raw material,
archaeological objects also have particular
mechanical properties. Their values may
vary as a result of differences in their
compositional vectors but also of the
chemical, physical, and biological
constraints inherent to each substance,
describing how the object will react to
applied forces. The main properties are
elastic, strength, and vibration.
5.6 Elastic Properties – materials that

behave elastically generally do so when
the applied stress is less than a yield
value. When the applied stress is
removed, all deformation strains are
fully recoverable and the material
returns to its undeformed state. The
Elastic modulus, or modulus of elasticity, is
the ratio of linear stress to linear strain.
It measures the stiffness of a given
material and is measured in units of
pressure MPa or N/mm². It can be
obtained by the Young modulus, bulk
modulus, and shear modulus. The
Poisson's ratio is the ratio of lateral
strain to axial strain. When a material is
compressed in one direction, it usually
tends to expand in the other two
directions perpendicular to the direction
of compression.
Nevertheless, besides elasticity, an object

can also respond to force by viscoelasticity,
plasticity or fracture. Yield strength refers to
the point on the stress-strain curve beyond
which the solid starts to deform plastically

and cannot be reversed upon removal of the
loading, thus producing permanent plastic
deformation, but still remaining in one
piece. Prior to the yield point (MPa) the
material will deform elastically and will
return to its original shape when the
applied stress is removed. When the stress
is greater than the yield stress, the material
behaves plastically and does not return to
its previous state, and fracture can occur.

Non-linearities in mechanical properties
can be due to non-linear material behaviour
or be caused by changes in geometry.
Material non-linearity is originated by non-
linear relationships between properties
arising from the kinetic and kinematic
variability. A material is said to be linear if
some specified influence (e.g., stress)
produces a response (e.g., strain)
proportional to the influence, as described
by Hooke's law. In this case, a linearly elastic
material deforms proportionally to the
applied load, returning to its original shape
and size upon removal of the load, as
discussed above. For instance, glass is a
linear material. Conversely, wood is
definitely a non-linear material, since it does
not comply with Hook’s law. So are soils,
and anisotropic metals, ceramics and stones
(Reddy 2004, Ashby 2005).
5.7 Strength Properties – the material’s

mechanical strength properties refer to
the ability to withstand an applied stress
without failure, by measuring the extent
of a material's elastic range, or elastic
and plastic ranges together. Loading,
which refers to the applied force to an
object, can be by:

5.8 Tension: this involves pulling or
elongating two sections of a material on
either side of a plane. It can be
quantified as ultimate tensile strength,
which is the maximum amount of
tensile stress a material can withstand
while being stretched or pulled before
failure. Ductility measures how much a
material deforms under tensile load
before breaking. It can be measured in
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percentage of elongation of a tensile
sample after breaking. On the contrary,
brittleness is the ability of a material to
fracture with very little or no previous
detectable deformation.

5.9Compression: involves pressing the
material together. In fact, it is the
opposite of tensile loading. Compressive
strength: is the maximum amount of
compressive stress a material can
withstand while being compressed
before failure. Hardness (and nanoin-
dentation hardness) is the ability to
withstand surface indentation, e.g.
Brinell hardness number. A measure for
material hardness can also be the degree
of abrasion, which is the resistance to
grinding force.

5.10 Bending: involves applying a load that
causes a material to curve, resulting in
compressing the material on one side
and stretching it on the other. It can be
quantified as bending strength and
flexural strength, in MPa.

5.11Shear: involves applying a load parallel
to a plane, causing the material on one
of the sides of the plane to want to slide
across the material on the other side. It
can be quantified as Shear strength,
which is the maximum amount of shear
stress a material can withstand before
failure. Shear strain: change in the angle
between two perpendicular lines in a
plane.  Shear modulus (or modulus of
rigidity, ratio of shear stress to shear
strain) (MPa), measures the stiffness of
materials indicating the resistance to
deflection of a member caused by shear
stresses. It is concerned with the
deformation of a solid when it
experiences a force parallel to one of its
surfaces while its opposite face
experiences an opposing force (such as
friction). 

5.12 Torsion: torsion strength indicates the
applied force which causes twisting in
a material.

5.13Fatigue: fatigue limit refers to the

maximum stress a material can
withstand under cyclic loading. This
resistance to failure under particular
combinations of repeated loading
conditions is measured in MPa.

5.14 Friction properties – they include the
coefficients of static, kinetic, and rolling
friction, which depend on the moisture
content, the surface roughness, and the
opposing surface’s characteristics.
Friction is expressed by the ratio of the
magnitude of the friction force (or
maximum friction force, when static
friction) per the magnitude of the
normal force, and is measured in
Newtons (N). Although related with
the visual appearance of texture, they
should not be confounded.

5.15 Vibration Properties – speed of sound
and internal friction are of most
importance in structural materials, or
even in the study of archaeological
musical instruments. Speed of sound is
a function of the modulus of elasticity
and density. Internal friction is the term
used for when solid material is strained
and some mechanical energy is
dissipated as heat, i.e., damping
capacity.

Although nowadays there is a vast
number of publications and digital material
libraries available with the proper values for
the different atomic, molecular, physical, and
mechanical properties for different elements
and materials, for less common materials in
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Figure 6 Universal Testing Machine (< 50 kN), using
the UNE 56-537-79 standard: Salix sp yield strength

test perpendicular to wood grain (left), graphic
showing results of yield strength test (right)
(Moitinho de Almeida and Barceló 2012a).



modern life, notably some of the most used
in prehistory and ancient times, it can be
hard, or even impossible, to measure how
their chemical, physical, or biological
structure constrained their mechanical
properties. In those cases, it can be necessary
to conduct real-world tests (Figure 6) in
order to obtain the particular physical and
mechanical values of a specific material that
a given archaeological object is made of.
Taking the example of wood, to measure
such values with a Universal Testing
Machine (UTM) implies the direct
manipulation of real wood samples. Here,
modern material specimens of the same
family, type and/or taxon, need to be
arranged, prepared, and tested in a
controlled manner following the appropriate
international standards, meaning that: 
b) The tests can be replicated with

reasonable accuracy;
c) Measures can be taken and used as the

material´s properties reference values.
Because wood is a heterogeneous and

anisotropic material, it may be necessary to
perform tests not only parallel but also
perpendicular to the wood’s grain, in order
to fully characterize its physical and
mechanical properties.

It is surprising the lack of research on the
physical and mechanical properties of
materials in mainstream archaeological and
archaeometric studies. Archaeologists insist
in documenting ancient artefacts, but such
documentation never takes into account
these properties of ancient materials, when
without such information any effort in
functional analysis is impossible. It is
undoubtedly reasonable the impossibility
to “use” in the present, or even “to touch”,
prehistoric or other ancient objects in order
to preserve its integrality, may be the cause
for the delay in this area of investigation.
Imagine the answer of a Museum director
when we ask her/him to break a prehistoric
object so we may measure its physical and
mechanical properties.

6. ARTIFICIAL INTELLIGENCE
TECHNIQUES AND
TECHNOLOGIES FOR FUNCTIONAL 
EXPLANATION

Functional analysis in archaeology is a
fast perfect example of an inverse problem.
That is, the answer is known, but not the
question. The problem we want to solve can
always be represented in the motto:
“Guessing how the object was used from
the object’s visual appearance and material
composition”.  Here the past function is the
unknown question we are looking for, and
the form, texture, material properties are
the raw data we have measured. The more
precise and quantitative are such perceptual
features, the more reliable the inferences
about past behaviour.

Functional analysis can be carried out
conjecturing unobservable mechanisms that
link the input (observation) with the output
(explanation). It can be defined as the
recognition of observed patterns or the
prediction to a larger set of circumstances
of unobserved outcomes, by generalizing
from a group of measurements for which
the desired outcome is known. Since
Aristotle, generalization has been the
paradigmatic form of inductive inference.
In our case, the task will be to find the
common structure in a given perceptual
sequence, under the assumption that:
structure that is common across many
individual instances of the same cause-
effect relationship must be definitive of that
group (Holland et al. 1986, Thagard 1989,
Triantaphyllou and Felici 2006, Kowalski
2011, Flach 2012).

Consequently, certain characteristics or
properties should be more probable than
others when the object was manufactured
to fulfil a specific “function”. That means
that the characteristic perceptual properties
of a precise function will be more probable
when the more characteristics be “frequent”
in objects that performed such action, and
the less characteristics be “infrequent” in
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the same set of objects. The propensity,
inclination, or tendency of certain
properties of form, texture and material to
appear together is then, what we need to
learn how perceptual data can be related
with concrete functions. That is, we should
learn a mapping from the hypothetical
function to the measured values of form,
size and material provided some instances
of such a mapping are already known or
can be provided by direct experience in the
world. When subsequently asked to
determine whether novel instances belong
to the same function, those instances that
are similar to instances characteristic of a
single event of a single class of events will
tend to be accepted.

This way of understanding functional
analysis lead us directly to the concepts of
Classification and Clustering, because we
always can understand functional analysis
as the partitioning of an observation set
according to a similarity criterion and
generating class descriptions from these
partitions. 

Clustering is the process of grouping
input samples in similarity classes
partitioning the input space, so that
diversity may be explicitly recognized and
encoded. The starting point is the formal
description of each object as an ordered set
of features. “Similar” objects are those that
have nearly the same values for different
features. Thus, one would like to group
samples to minimize intra-cluster distances
while maximizing inter-cluster distances,
subject to the constraints on the number of
clusters that can be formed. This approach
is popular within statistics: Principal
Component Analysis, Cluster Analysis, etc.,
are good examples. A more “artificial
intelligence” approach to unsupervised
learning, beyond classical statistical
procedures is vector quantization methods,
a general term used to describe the process
of dividing up space into several connected
regions, using spatial neighbourthood as an
analogue of similarity (Kohonen, 2001;

Barceló, 2009). Every point in the input
space belongs to one of these regions, and it
is mapped to the corresponding nearest
vector. For example, the attributes for
"object A" are mapped to a particular output
unit or region, such that it yields the highest
result value and is associated with that
object, while the attributes for "object B" etc.
are mapped to different regions (Engel and
van der Broeck 2001).  There are many
applications of self-organization or
unsupervised learning for functional
analysis: Mayorga and Ludeman (1991,
1994),  Jain and Karu (1996), Ruiz del Solar
(1998), Kulkarni (2001), Acebrón-Linuesa et
al. (2002), Chandraratne et al. (2003),
Valiente-González (2001, Bhakar et al.
(2004). Relevant examples of unsupervised
analysis of functional analysis based on
archaeological texture data have been
published by  Fulcher (1997), Bell and
Croson (1998), López Molinero et al. (2000),
Ma et al. (2000; Ma 2003), Novic et al. (2001),
Petrelli et al. (2001, 2003), Chang et al.
(2002), Grudzinski et al. (2003; Grudzinski
and Karwowski 2005), Lletí et al. (2003),
Fermo et al. (2004), Kadar et al. (2004),
Beardah and Baxter (2005), Baxter (2006),
Toyota et al. (2009).

Classification is a form of categorization
where the task is to take the descriptive
attributes of an observation (or set of
observations), and from this to label or
identify the observation within a different
phenomenological domain. The descriptive
attributes may themselves be drawn from
different data domains, each domain
effectively contributing an axis to a
combined feature space of all possible object
descriptions. Hence, the task of the classifier
is somehow to partition this feature space
into disjoint regions that each represents a
particular class, cluster, or pattern. The goal
in a classification problem is to develop an
algorithm which will assign any artefact,
represented by a vector x, to one of c classes
(functional assighments). The problem is to
find the best mapping from the input
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patterns (descriptive features) to the desired
response (classes). Some finite or infinite set
of patterns (binary or real valued vectors)
are partitioned into classes, and a particular
problem is specified by a set of selected
training patterns, which are given together
with their corresponding class names, and
the goal is to classify all patterns as correctly
as possible. The problem is of dividing the
set of possible input vectors into two sets,
one for which its output is positive, and the
other for which its output is negative. The
classes will be said to be linearly separable
when the separation of different input-
output patterns is better than if no decision
rule was used, In the other case, when it
seems there is no clear decision rule to
separate examples from counterexamples,
we say that classes are not separable. 

Whereas Clustering equals self-
organized or unsupervised learning, Classi-
fication tasks are a kind of supervised
learning problem, on the grounds that the
known instances of a cause-effect
relationship are like information given by a
teacher or supervisor. In this way, we learn
to classify visual and non visual data as
members of contrastive functional
categories through trial and error with
corrective feedback (the teacher). We can
formalize this inferential task in terms of a
kind of “automated learning”:

Given:
• A description language LE for examples,
• A hypothesis language LH for possible

hypotheses (i.e., possible learning results),
• A set of positive examples (instances of a

certain concept)
• A set of negative examples (instances that

do not belong to the concept),
• A predicate "covers", which indicates

whether a given concept/hypothesis
covers a given example,

• An acceptance criterion (measure) which
evaluates hypotheses,

Find: 
• An hypotheses in the language LH

fulfilling the acceptance criterion. The

partial order of LH can be used to prune
the search.

In other words, the idea is to program a
system able to look for common features
between positive examples of the function
to be predicted, and common differences
between the negative examples. This task is
exactly like an example of a truth-function
learning problem:
1 1 0 1 1 → 1
1 0 0 0 0 → 0
0 1 1 1 0 → 1
1 1 0 0 1 → 0
0 0 0 0 0 → ?

Concept learning problems have the
same form, except that target outputs are
either “yes” or “no”(or “true”=1 and
“false”=0). Inputs that map onto “yes” are
treated as positive examples of a particular
concept. Inputs that map onto “no” are
treated as negative examples (i.e.,
counterexamples). The process of finding a
solution to such a problem is naturally
viewed as the process of calculating the
communalities among positive examples.
As such, it is a variation of the philosophical
theories seeing induction as a process
involving the exploitation of similarity.

Differences with the classical statistical
or clustering approach are obvious. In a
clustering approach to functional analysis,
a set of functional assignments will be
modelleled by first describing a set of
prototypes, then describing the objects
using these prototypical descriptions. In
such an unsupervised or self-organized
task, the goal is to identify clusters of
patterns that are similar, thus identifying
potential generalizations. Functional
assignments are based on the assumption
there is a structure to the input space such
that certain patterns occur more often than
others, and it would look for what generally
happens and what does not. The trouble is
that with clustering approaches we are not
discovering how to instantiate a specific
function on the basis of some perceptual
information. Whereas supervised learning
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involves learning some mapping between
observed values of shape, texture and/or
composition and their hypothesized
functions, much unsupervised learning can
be viewed as learning a mapping between
observations and themselves. It is important
to understand the difference between
clustering and classification, and between
learning and partitioning or clustering. A
good functional classification should both
impose structure and reveal the structure
already present within the data. The
outcome from a clustering of a set of archae-
ological objects may have little meaning
since the resulting clusters are not
associated (by design) with any functional
assignment arising from the domain of
study (although they may be as a
consequence of inherent structure in the
data). Automated explanation cannot be
possible if the automated archaeologist
cannot distinguish positive and negative
instances of the explanation to be learnt.
That is to say, if it has not any knowledge
that will ensure that its causal predictions
tend to be plausible and relevant to some
predefined goals. Consequently, the
acquisition of explanatory knowledge
cannot be reduced to clustering, because
such methods are limited by the natural
grouping of the input data, and they are
based on restricting knowledge production
to finding regularities in the input. Such
regularities are not generalizable out of the
specific limits of the input data used.

On the other hand, a supervised classi-
fication approach to functional analysis will
imply that instrumental functions as
“cutting”, “scraping”, “containing”, or
symbolic functions like “visualizing the
idea of violence”, “representing the idea of
dominance” or any other are to be learnt in
an objective way, provided we have enough
known instances for the underlying
function, and a general background
knowledge about how in this situation a
human action has generated the observed
modification of visual appearances. When

subsequently asked to determine whether
novel instances belong to the same function,
those instances that are viusually (or non-
visually) similar to instances characteristic
of a single function or a single class of
functions will tend to be accepted. For
instance, we will understand what a house,
a castle, a burial, a tool are when we learn
how a prototypical house, a prototypical
castle, a prototypical burial, a prototypical
tool have been made, under which social
and economic conditions they have existed. 

The approach we are suggesting is a
surrogate of experiment design.
Experimental analysis is the process
whereby the antecedents of a phenomenon
are manipulated or controlled and their
effects are measured. An obvious archae-
ological example is modern use wear
analysis. By replicating lithic tools and
using them a determined period of time
performing some activity (e.g., cutting fresh
wood) we will be able to test the
relationship between kinematics, worked
material, and observed use wear on the
surface of the tool. When laboratory
replication is not possible (i.e., not all social
activities performed in the past can be
replicated in the present), archaeologists are
limited to mere observation. Ethnoarchae-
ological data can be also used to generalize
observations and learn explanatory general
principles.

Computer scientists are intensively
exploring this subject and there are many
new mechanisms and technologies for
knowledge expansion through iterative and
recursive revision. Artificial Intelligence
offers us powerful methods and techniques
to bring about this new task. Fuzzy logic,
rough sets, genetic algorithms, neural
networks and Bayesian networks are
among the directions we have to explore.
Although statistical reasoning is still giving
its support to all these methods, it is not
classical statistical inference. Artificial
Intelligence paradigms differ from usual
classification and clustering methods, in
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that they are (in comparison at least) robust
in the presence of noise, flexible as to the
statistical types that can be combined, able
to work with feature (attribute) spaces of
very high dimensionality, they can be based
on non-linear and non monotonic
assumptions, they require less training data,
and make fewer prior assumptions about
data distributions and model parameters.
The huge number of learning algorithms
and data mining tools make impossible that
we can review the entire field in a single
paper (Langley, 1996, Han and Kamber,
2001; Witten and Frank, 2005). Free
computer programs like Weka1 or Tanagra2

can be explored to discover how to extract
meaning and knowledge from archae-
ological data.

The most basic supervised learning
algorithms are designed to find a
conjunctive description for a single concept
C that covers positive instances of C and
that fails to cover negative instances. In this
way, we can represent the solution to an
inverse problem as a logical conjunction of
Boolean features, values of nominal
attributes, limits on the values of numeric
attributes, or some combination of them. It
is usual to refer to each component of such
conjunction as a condition or a test.
Alternatively, functional hierarchies
provide a framework for knowledge
organization, and a considerable amount of
machine learning research has taken this
approach. Such hierarchies can be
represented as a decision tree consisting of
nodes and branches. Each node represents
a separate function, typically with its own
associated intentional definitions. The links
connecting a node to its children specify an
“is-a” or subset relation, indicating that the
parent’s extension is a superset of each
child’s extension. Typically, a node covers
all of the instances covered by the union of

its descendents. In fact, such a decision tree
can be seen as a collection of rules, with
each terminal node corresponding to a
specific decision rule. 

Inductive decision trees are increasingly
applied in archaeology. Modern
applications range from sex determination
of buried human bodies to the
discrimination of geo-archaeological soil
data. In any case, it is in archaeometry
where these methods have found its
greatest popularity in the recent years
(Baxter 2006). More details on applications
are given in Barceló (2009, 2010b).

Alternatively, we can use neural
networks as a non-linear fitting mechanism
to find regularities in a set of data. An
Artificial Neural Network (ANN) is an
information processing paradigm that is
inspired by the way biological nervous
systems, such as the brain, process
information. It is composed of a large
number of highly interconnected
processing elements (neurons) working in
unison accepting numeric inputs and
sending numeric outputs. Neurons are
organized in such a way that incoming
vectors (descriptions) are sequentially
transformed into output vectors (archae-
ological explanations) (Fig. 7).
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Figure 7 A Three-layer Neural Network
topology, with a hidden layer (Barceló 2009).

1. http://www.cs.waikato.ac.nz/ml/weka/
2. http://eric.univlyon2.fr/~ricco/tanagra/en/

tanagra.html



Different output neurons represent
different “prototypical functions” along the
continuum, and respond with graded
signals reflecting how close the current
exemplar is to their preferred value. Note
that what is really being stored is the degree
to which one neuron — representing a
microfeature of the final concept or
prototype — predicts another neuron or
microfeature. Thus, whenever a certain
configuration of input features is present, a
certain other set of features is also present.
This is important, because it means that the
system does not fall into the trap of needing
to decide which category to put a pattern in
before knowing which prototype to
average. The acquisition of the different
prototypes proceeds without any sort of
explicit categorization. If the patterns are
sufficiently dissimilar, there is no
interference among them at all. 

ANNs, like people, learn by example. An
ANN is configured for a specific
application, such as pattern recognition or
data classification, through a learning
process. Learning in biological systems
involves adjustments to the synaptic
connections that exist between the neurons.
This is true of ANNs as well. In general,
upon repeated presentation of various real
examples and under the steady pressure of
a learning rule or algorithm that makes
small adjustments in the connections
among artificial neurons, the network
slowly but spontaneously generates a set of
internal representations, one for each of the
several features it is required to detect. The
overall result is that after learning the
network contains a number of processors
chained together in such a way as to
produce the appropriate outputs given a set
of inputs. During learning, a network will
typically develop a way of organizing its
representations so that different inputs
come to be represented as belonging to
partitioned classes or groups (which may
themselves be hierarchically ordered into
various subgroups). 

More than an analogy with a universal
database, we are suggesting an associative
memory. This is a device storing not only
associations among individual perceptual
representations, but organizing
“conceptual” information not directly
derived from the senses. Neural networks
are used as associative memories. Pattern
associators are constructed from the
neurons and modifiable connections
defined in the neural architecture. During a
learning stage, the activation states of the
input processing neurons are used to
represent patterns to-be recalled. The
connection weights are then modified to
store the association between the two
patterns. It is a distributed representation
because this association is stored
throughout all the connections in the
network, and because one set of
connections can store several different
associations. During the recall stage, a cue
pattern is presented to the network by
activating the input units. This causes
signals to be set through the connections in
the network and to activate the output
processors. If the associative mechanism
runs properly, then the pattern of activation
in the output neurons will be the pattern
that was originally associated with the cue
pattern. Therefore, the computational
system acts like an automated archaeologist
acquiring visual inputs in form of a vector
of activity to the input neurons (shape,
texture or composition feature detectors),
which will be used as a cue pattern to
retrieve its associated explanation,
represented as a vector of activity in the
memory’s output neurons. 

This way of representing the function of
archaeological observables is the
consequence of graduated learning in a
neural network: the definition of “function”
emerges as the result of a number of
different experimental situations or the
gradual differentiation of a single function
into two or more related ones. Therefore, as
activation spreads from compositional
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input to behavioural output, the suggested
functional answer grades according to how
well the input exemplifies the existing
experimental exemplars. Considering that
several different prototypes can be stored in
the same set of weights, a typical single
prototype model may represent instances as
sets of attributes (properties or features)
with some numeric measure of both the
importance of the attribute to that concept
(sometimes called its “weight”) and the
extent to which the attribute is present. In
this way, neural networks adopt a
probabilistic view to functional catego-
rization. The idea of defining necessary of
sufficient properties is replaced with that of
the probable properties for a member of a
given class. A probabilistic view accounts
for graded class membership, since the
“better” members will be those exhibiting
more of the characteristic properties.
Instead of representing several concrete
instances in memory, we judge category
membership by degree of connection to an
abstract model or prototype.

Such an associative memory, however, is
not limited to the association of only those
specific individual objects whose functional
properties have been experimented before.
If such were the case, the mechanisms
underlying archaeological automatic
explanation would be of limited use. As
archaeologists, we must identify a range of
novel visual data as corresponding to a
given type of object. Generalization is part
of our ability to identify objects and events;
we typically can identify social actions
having been performed in the past even
when the visual appearance of its material
consequences in the present does not
exactly matches what we know of
previously memorized cause/effect
associations. The capability for archae-
ological recognition implies then the
existence of some previous form of learning,
in which the abstract potentially
explanatory categories have been created
and defined. The goal of recognition is to

perform these identifications correctly, in
the sense that identification reflects a
meaningful property of the world that is
independent of the particular data that is
being interpreted.

Given the particular vector
representation of input data, 2D shape
contours and even 3D geometrical models
of form boundaries can be easily transferred
into a neural network. Shape vectors can be
introduced into a neural network in
different ways. The most usual is a list of
discrete features of geometrical indices like
those already discussed. Lengths, widths
and depths have been used to input
geometry into a neural network (Kulkarni,
2001), but also areas, perimeters, area ratios,
Euler numbers, disperse degrees and
moments related to the area of the window
in which the object lies (Ji et al. 2005), and
global shape parameters like elongation,
angularity, roughness, or roundness
(Kalliomäki et al. 2005; Martínez-Aljarín et
al. 2005).

We can mention the use of ANN
methodology in rock-art research (Barceló
1993, Díaz and Castro 2001), lithic arrow-
point shape classification (Lohse et al. 2004;
Keogh et al. 2010; Koutsoudis et al. 2010),
the reconstruction of whole pottery vessels
(Zweig, 2006; Kleber and Sablatnig, 2009),
the historical classification of ancient
Mesopotamian seals or Egyptian scarabs
(Camiz and Venditti, 2004), the recognition
of written characters in ancient documents,
coins and  epigraphic inscriptions (Kashyap
et al., 2003; Maaten and Boon 2006; Maaten
et al. 2006). Human and animal bone
materials found in archaeological sites can
also been investigated using neural
networks (Gibson 1993, 1996, Bell and Jantz
2002, Corsini et al. 2005, Schmitt et al. 2001,
Bignon et al. 2005, Gil-Pita and Sala-Burgos
2006, Coppa et al. 2007). This approach has
also been taken into account for the classi-
fication of different properties of wheat
grains based on image morphology (Li and
Flenley, 1999; Wang et al. 2002) and in the
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identification of mineral inclusions and
petrographic information from thin sections
of geologic or archaeological samples
(Fueten 1997; Fueten et al. 2001; Thompson
et al 2001; Drolon et al. 2003; Marmo et al.
2005). Those examples give us a clue about
how to apply neural networks for shape
identification in palaeobotanical or
archaeometric analysis (for instance,
microscopy recognition). For more archae-
ological applications and examples of this
paradigm see Barceló (2009, 2010b).

As a pattern recognition methodology,
artificial intelligence technologies allow the
activation of functional assignments to a
degree that depends both on available
knowledge at each moment (the level of
activation in all the neurons to which it is
connected) and on the association between
individual knowledge bits (the strength or
weight of connections among neurons),
which can be either positive or negative.
Furthermore, in contrast with discrete
Aristotelian logics, such computer models
are more graded. The computer integrates
information from a large number of
different input sources, producing a
continuous, real valued number that
represents something like the relative
strength of these inputs (compared to other
inputs it could have received). The
computer model then communicates
another graded signal (its rate of firing, or
activation) to other neurons as a function of
this relative strength value. These graded
signals can convey something like the
probability of the cause in some specifically
constrained circumstances.

7. LIMITATIONS OF CLASSI-
FICATORY APPROACHES FOR
FUNCTIONAL ANALYSIS

Methods of functional explanation
reviewed up to here are not entirely
trustworthy. Functional explanation cannot
be reduced to the task of finding the
common structure in a given perceptual

sequence, because such methods are limited
by the natural grouping of the input data,
and they are based on restricting
knowledge production to finding literal
regularities in the input. Such regularities
are not generalizable out of the specific
limits of the input data used. If the archae-
ological evidence happens to be untypical,
or for instance the neural network
misidentifies the relevant conditions,
predicted behaviour may be permanently
warped. Even human experts are
vulnerable to inappropriate learning. We
may be victims of self-reinforcing phobias
or obsessions, instilled by a few
experiences. 

Therefore, we should take into account
that artificial intelligence inductive
techniques that rely “only on the input” are
of limited utility, and we should integrate
techniques that compare the functional
assignments generated using different
inferential mechanisms. Fucntional analysis
is an inference process, whose very nature
is beyond a mere mapping out of the
statistical correlation present in the
descriptive features of material evidences. 

First of all, we should explore the
possibilities of a different kind of learning
which goes beyond standard induction.
This is the case of relational learning. One
way of understanding the idea of such
relational learning is in “equivalence”
terms: two objects are functionally
equivalent (or analogous) if they do the
same (or similar) things in the same (or
similar) systems although they do not have
the same shape, texture or composition. No
other features of the objects should be
relevant other than the fact that they do the
same things under certain conditions: it is
their potential behaviour what matters. 

Therefore not only communalities are
necessary for learning the past function of
archaeological objects, but also some kind
of contingent relationship between the
observed examples, which will determine
the type of association learned. The central

FUNCTIONAL ANALYSIS FrOM VISUAL AND NON-VISUAL DATA 297



problem of functional analysis is then to
specify constraints that will ensure that the
predictions drawn inductively are plausible
and relevant to our general explanatory
goals. Functional explanation is thus highly
context dependent, being guided by prior
knowledge activated in particular situations
that confront the automated system as it
seeks to achieve its goals.

The trouble with functional analysis
based on implicit relationships is that this
kind of input data is not always apparent.
On the other hand, the number of potential
relationships in a given scenario is generally
unbounded, implying that the number of
possible relational regularities is infinite.
Given the fact that everything may be
related with everything, this is, in principle,
an infinitely hard operation. It is a good
example of an ill-defined problem, whose
problem space is infinite. To solve this
situation there are only three approaches:
a) The experimental replication;
b) The controlled observation;
c) Or the simulation of the related factors.

Regrettably, not all social activities
performed in the past can be replicated in
the present. What cannot be replicated, in
many occasions can be observed or has
been observed and someone has witnessed
it. Ethnoarchaeology has been defined as
the observation in the present of actions that
were probably performed in the past.
Ethnographic and historically preserved
ancient written sources can be used as
observational situations in which some
causal events took place and were
described.

According to the theoretical framework
discussed at the beginning of this paper, we
should focus on processes, rather than on
visual/non-visual components. Actions and
intentions can have subtle relationships in
the context of tool use. It is not sufficient to
simply assign objects to roles in specific
actions and call the behaviour object use
(Kitamura & Mizoguchi, 2004; Erden et al.
2008; St. Amant and Horton 2008).

Therefore, function cannot be reduced to a
linear relationship between input and
output, but a non-linear and non-monotone
causal connection between changing
intentions, design and uses. This constant
interaction between task and object,
between what users can do and what they
want to do is what can be called the artefact-
task cycle. The net effect is that a change in
the design of an artefact may not only
change practices and tasks, but lead to a
change in the environments where it is
being used and a change in the sub-
populations who now make use of it. This
regularly causes speciation of artefact and
segmentation of user community (Kirsh
2009).

Archaeological observables should be
explained by the particular causal structure
in which they are supposed to have been
participated. The knowledge of the function
of some perceived material element should
reflect the causal interactions that someone
has or can potentially have with needs,
goals and products in the course of using
such elements. This approach has been
called the affordances view of function,
because it can be traced back to Gibson’s
formulation of affordance theory (Gibson,
1979, Norman, 1989). This theory states that
information available from the perception
of an object gives clues as to its function and
possible manipulations. According to
Turvey (1992), affordances are dispositional
properties of the environment, that is to say,
“tendencies” to manifest some other
property in certain circumstances. “Being
fragile” is a common dispositional property.
Something is fragile just in case it would
break in certain circumstances, particularly
circumstances in which it is struck sharply.
Thus dispositional properties are
conceivable only when paired with
circumstances in which the disposition
becomes manifest—the glass is fragile only
if there are possible circumstances in which
it might shatter. That means that an object’s
physical structure and an agent’s action
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specify an affordance jointly, constituting
the immediate causes of a perceived
function.

On the other hand, the term affordance
designates the range of possible actions
which objects or other elements of the
surrounding offer to an agent. Therefore, it
may also refer to relationships between
structural properties of objects and specific
components of their use (Bozeat et al., 2002;
Chaigneau et al., 2004). In tool use,
however, the function determined by
structural properties may concern
interactions of the tool with other tools,
recipients or material rather than with the
animate actors themselves. Comprehension
of such interactions has been concep-
tualized as ‘mechanical reasoning’ or
‘mechanical problem solving’ (Hegarty,
2004). Consequently, affordances are not
properties, or at least not always properties
(Chemero 2003). Affordances are relations
between the abilities of people, physical
characteristics of solids, and features of the
environment. Therefore, affordances are
partly constituted by functional properties,

To put it shortly, archaeological entities
should be described not only in terms of
their intrinsic properties (form, texture, and
material properties) but also in terms of
their affordances: relationships between
these properties and the properties/abilities
of the intended users. The affordances of
any archaeological evidence become
obvious in its use and/or formation process.
Both involve establishing and exploiting
constraints: between the user/producer and
the artefact, the user/producer and the
environment, and the artefact and the
environment. Physical affordances, closely
related to constraints, are mutual
relationships that involve both the agent
and the artefacts she/he manipulates (and
the environment he/she operates). An
object’s function should reflect the actions
that can be performed on it, given both its
physical structure and the physical
structure of the agent interacting with it.

Consequently, reasoning about the
affordances of physical artefacts depends
on the following factors and senses (Bicici
and St. Amant 2003):
• Form/Texture/Material: For many tools,

these are decisive factors in their
effectiveness.

• Planning: Appropriate sequences of
actions are basic to tool use. The function
of a tool usually makes it obvious what
kinds of plans it takes part in.

• Dynamics: kinematic and physic
relationships between the parts of tools,
and between the tools and their targets
provide cues for proper usage. For
reasoning about a tool’s interactions with
other objects, and measuring how it
affects other artefacts, we need to have a
basic understanding of the physical rules
that govern the objects. 

• Causality: causal relationships between
the parts of tools, and their corresponding
effects on other physical objects, help us
understand how we can use them and
why they are efficient.

• Work space environment: a tool needs
enough work space to be effectively
applied.

• Design requirements: using a tool to
achieve a known task requires close
interaction with the general design goal
and requirements of the specific task.

A possibility to add affordance
knowledge into archaeological functional
analysis would be through the
decomposition of use-behaviour processes
into chains of single mechanisms or
operations, each one represented by some
part (or Physicochemical/mineralogical
component) of the studied object. Zlateva
and Vaina (1991) have noted that
decomposed parts relate to the most
obvious operations an object may be
submitted. They claimed that in order to
know the use of an object, we need to infer
its proper usage position, the direction of
the action, and the pressure to be applied by
a prospective user. These cannot be learned
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without spatial relations between parts and
subparts, which imply that the parts and
subparts directly relate to behaviours made
with the object. Changing the direction of
forces, torques, and impulses, and devising
plans to transmit forces between parts are
two main problems that arise in this
framework. To solve these, we need to
integrate causal and functional knowledge
to see, understand, and be able to
manipulate past use scenarios. We have
already defined functional analysis as the
application of an object in a specific context
for the accomplishment of a particular
purpose. Thus, we should consider the
modality of the operation, which will be
reflected by the task description and context
of application (Bogoni, 1995; Brand 1997).
That means, we should add the rules of
physics that govern interactions between
objects and the environment to recognize
functionality. The functional outcome
cannot occur until all of the conditions in
the physical environment are present,
namely the object(s), its material, kinematics
and dynamics. Once these conditions exist,
they produce and process the relevant
behaviours, followed by the outcome
(Barsalou et al. 2005). That means we need
to integrate material, form, and texture
models with representations of dynamic
physical relationships to recognize the
functionality of objects. The recognition
process is enhanced by the consideration of
causal relationships between objects, such
as the predictable or observable effect on
some target object, by carrying out an action
with a tool or object.

DiManzo et al. (1989) regarded
functional reasoning as the ability to
integrate visual/non-visual data and
function with the help of planning. They
described the difficulty of separating the
function of a tool from the plan it takes part
in, since plans and tools evolve together,
and differentiate with time. More research
on this domain of integrating knowledge of
physics, the mechanics of the task, and

perceptual data (visual and non-visual:
shape, texture and/or material) has been
advanced by Far (1992), Deshmukh et al.
(1993), Cooper et al., (1995), Hodges (1995),
Rivlin et al. (1995), Froimovich et al. (2002),
Zhang et al. (2002), Peursum et al. (2003,
2005, 2007), Pechuk et al. (2005), Erden et al.
(2008). Alternatively, it is possible to build a
model of function based on a description of
the physical structure (shape/form) of the
known ancestors of this object, namely
certain reproduced physical dispositions. In
that sense, both the artefact and its
ancestors are part of a genetic reproduction
history and are thus products of processes.
In some cases, it can be proved that the
physical structure of the element is
approximately similar to the physical
structure of those ancestors, including the
dispositions that correspond to the proper
functions ascribed to the artefact. Only
malformed, and consequently
malfunctioning, are an exception of the
principle that the genetic structure of the
causal history provides partial justification
for the belief that: artefact A has the physical
disposition (shape) that corresponds to the
ascribed function (Vermaas and Houkes,
2003). Obviously this approach cannot be
applied in all circumstances, because it is
wrong in the case of new objects and the
introduction of novelty and revolutionary
changes, but it can be useful for
understanding the causal history (or
“genetic” reproduction) of a historically
connected series of objects.

8. FUNCTION FROM OBJECT 
INTERACTION

More than integrating knowledge of
physics with the appearance of the archae-
ological object in a deductive way, we need
to interact with the object to learn in a
proper way what we can do with it.
Interacting means here using, that is to
intervene in the empirical world changing
and modifying the solids around us. As it

300 J.A. BArCELO et al



has been suggested many times in
psychology, to “interact” directly with a
solid material entity gives much more
information than simply “seeing” it (Lacey
et al. 2007, Deshpande et al. 2010).

The major interest in object direct
interaction lies in the recognition of
additional properties, which determine the
possibilities and limits of what can be done
with the object (Goldenberg and Spatt
2009). Where each property tells us
something about the reaction an artefact
would have gone through, in case
prehistoric people brought it into a certain
environment and used it in a certain way.

There are different modalities of direct
interaction with an archaeological object
that can be here mentioned, and from which
we can analyze distinct aspects, namely:
• Static: involves displacements, reaction

forces, strains, stresses, and factor of
safety distribution; 

• Frequency: involves stresses caused by
resonance; buckling, large displacements
and failure due to axial loads; 

• Fatigue: implies calculating the total
lifetime, damage, and load factors due to
cyclic loading; displacements, reaction
forces, strains, and stresses at
incrementally varying levels of loads and
restraints, in the case of non-linear
studies; 

• Dynamic: refers to the object's response
due to loads that are applied suddenly or
change with time or frequency. This
permits defining parameters such as
gravity, type of contact and position
relationship between components or
assemblies. 

To interact with past evidences of human
behaviour in that way, we can manipulate
virtual surrogates of tools, structures, and
other objects. In any case,
a) The constructed representation should

represent unambiguously the
corresponding physical object;

b) The representation should support (at
least in principle) any and all geometric

queries that may be asked of the
corresponding physical object. 
To build such a surrogate integrating

visual and non-visual – described earlier –,
we need a full digital solid model based on a
volumetric mesh defining both the exterior
surface and the interior volume of the object
(Figure 8). Solid models emphasize the idea
of informational completeness, physical
fidelity, and universality of representations.
This surrogate can be defined in terms of a

digital model of a physical entity, with
computable mathematical properties
allowing the emulation of distinct
behaviours on the real world.

When inserted in a simulated
interaction, the digital solid model has to be
first subdivided into a finite set of
connected elements. This fundamental
theory was outlined by the mathematician
Richard Courant in 1943 and developed
independently, and put to practical use on
computers during the 1950’s by aeronautical
structures engineers. Since then, the Finite
Element Analysis (FEA) computational
technique has been widely used in various
disciplines that draw on solid mechanics.
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Figure 8 3D digital solid model of wooden
artefact D01-KD89-10, from La Draga (Moitinho

de Almeida and Barceló 2012b). It has been
functionally analyzed as a spear. The point

cloud data was captured using the same scanner,
with the shortest FOV available for this scanner,
the 90 mm set of lenses, which has the highest

resolution (50 µm), and gives the maximum
level of detail. Fixing surface continuity errors
(top, detail). It is not a solid model with a mesh
on it, the mesh of elements is now the model.



Given its potentialities, archaeology should
not be an exception.

The basic concept of Finite Element

Method (FEM) lies in that a body or structure
may be considered as an assemblage of
many smaller cells, typically parabolic
tetrahedral solid elements (Figure 9).

The original body or structure is then
decomposed into finite dimensions, whose
elements are connected at a finite number
of joins called nodes or nodal points, with
determinable degrees of freedom.

Nodes are assigned at a certain density
throughout the digital model, depending on
the hypothetical stress levels of each
particular area. Regions which will receive
large amounts of stress are modelled having
a higher node density than those which
experience little or no stress. Points of
interest may consist of: fracture point
perceived at the archaeological object,
corners, complex detail, and high stress
areas, among others.

The resulting mesh of finite elements
acts like a spider web carrying the material
and structural properties for each region in
which we have decomposed the object, so
that those properties can be formulated and
combined to obtain the properties of the
entire artefact. Equilibrium equations for
the entire artefact are then obtained by
combining the equilibrium equation of each

element, ensuring the continuity at each
node. The necessary boundary conditions
are then imposed and the equations of
equilibrium are solved to obtain the
required values of Stress, Strain,
Temperature, Distribution, or Velocity Flow,
depending on the functional problem to
solve. Additionally, such dynamic
decomposition of the model enables the
analysis of how each node or the whole
assembly will react to distinct forces and
magnitudes. Thus, instead of solving the
problem for the entire structure or body in
one operation, the attention is mainly
devoted to the formulation of properties of
the constituent elements. In this way, we
increase the prediction accuracy in
important or critical areas, by reducing it in
others not so relevant functionally speaking
(Rao 2005; Strang 2008). Yet, one must keep
in mind that although the geometry of the
model has to be optimized before a
simulation can be achieved, the final solid
model must necessarily carry all the
relevant information. The accuracy of the
simulation results is intrinsically linked to
the quality of this new finite element model.

Once created the virtual model
integrating all observed and measured
properties of the real object, we can
recognize the function of an object
interactively, by observing the deformations
that happen on the model when submitted
to simulated forces (Stark and Bowyer, 1996,
Stark et al., 1996). The causal effect of such
forces can be efficiently represented
algorithmically using physical and
mechanical equations. In this domain, we
should mention pioneering work by Ernest
Davis (Davis 1990, 1993) formalizing the
kinematics of cutting solid objects, among
other functions. He showed the geometric
aspects of various cutting operations: slicing
an object in half, cutting a notch into an
object, stabbing a hole through an object,
and carving away the surface of an object.
He also gave a list of geometric relations
between the shapes and motions of the
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Figure 9 Parabolic tetrahedral Finite Element
(FE), defined by: 4 corner nodes, 6 mid-side

nodes, and 6 curved or straight edges. Each node
has 12 variables and degrees of freedom: 3

variables take care of translation, 3 of rotation,
leaving 6 to describe the deformation.



blades and targets. For example, he
suggested that a blade needs to be
sufficiently thin and hard, but he does not
discuss its elasticity or sharpness (see also
Duric, Fayman and Rivlin 1996, or Atkins
2009, for a more exhaustive analysis of the
mechanics of “cutting”). In archaeology,
Johan Kamminga and Brian Cotterell
applied mechanical sciences to understand
the kinematics and dynamics of shaping,
throwing, pressing, cutting, heating, etc., in
prehistoric and ancient times (Cotterell and
Kamminga 1990). Although such an
approach is not at the core of mainstream
archaeology, there are already important
and relevant applications (Kilikoglou et al.
1997, 2000; Tite et al. 2001; Richmond et al.
2005; Miller 2007; Hopkins 2008;
Kuzminsky and Gardiner 2012; O’Higgins
et al. 2012).

Running the adequate simulation, allows
testing the accomplishment an object had in
the past to effectively fulfil a specific action,
that is, a task which has been previously
formally described. Depending on the
archaeological problems one wants to
address, and the objects to be studied, some
types of simulation might be more or less
suitable, not suitable at all, or should even be
used in conjunction with each others.

To illustrate such approach, we present
here a very short abstract of our current
work on the functional analysis of
prehistoric wooden artefacts. We intend to
test the functional hypothesis of bows,
arrows, and spears from the Neolithic
archaeological lakeside site of La Draga
(Catalonia, second half VIth millennium cal.
b.C.). Some of our preliminary studies
consisted in reproducing the motion of
some of these artefacts, and analyzing its
behaviour by also incorporating the effects
of force and friction – e.g., ballistic: where
both parameters and settings of possible
trajectories, elements positions, velocity,
acceleration, friction, and distance have
been successively changed and tested, in
order to reveal, among other issues, if a

hypothetical spear was capable of
penetrating (Fig. 10).

When the use behaviour and the
corresponding mechanical process are
simple, we can suggest a linear model using
parameters that are constant over the entire
simulation and independent of each other.
In real world, however, parameters are
always dependent upon other parameters
to some degree, but in many cases the
dependency is so small it can be well
ignored.

Nevertheless, the physical world where
objects were once produced and used is not
a flat, linear domain where structural
responses are always proportional to the
applied forces. We can decide for a non-linear
model to bypass such difficulties, by
introducing dependent parameters that are
allowed to vary throughout the course of a
simulation run. To model non-linearities, we
must update the simulation parameters at
each iteration, recalculating displacements,
reaction forces, strains, and stresses at
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Figure 10 3D digital solid model of an
experimental wooden spearhead (PC3-A1),

scanned with the same 3D scanner, and a 90 mm
FOV set of lenses. Preliminary pressure-

displacement simulation test: the direction of
pressure is indicated by the red arrows; the grey

silhouette indicates the original form before
deformation, whereas the blue-to-red colours
indicate areas with lower-to higher levels of

deformation (detail at bottom image).



incrementally varying levels of forces and
restraints. Non-linearities generally arise
from two major sources: non-linear materials
and non-linear geometries. Such non-linearities
can occur due to large displacements, large
strains, or large rotations, and these enter the
formulation through the strain-displacement
relations as well as the equations of motion.
Non-linear boundary conditions are often
included in non-linear geometries because
the area of contact is a function of the
deformation (Reddy, 2004).

While the term non-linear primarily refers
to the nature of an object’s physical response,
the forces and boundary conditions that elicit
non-linear responses can either be static or
dynamic in nature. When the applied force
is a function of time, and the material
response is a function of displacement or
temperature, an object can respond in ways
that are difficult to predict. Predicting the
impact of time-varying forces and other
load-related effects, such as damping and
inertia, which can occur with alternating
forces, sudden applied forces, or intermittent
loads, requires dynamic analysis capabilities.

Of course, an archaeologist should face
this kind of challenges. We may analyze an
elastic material — such as a prehistoric bow
made of flexible wood — in a form that
constitutes both material non-linearities,
where the response varies dispropor-
tionately to the applied forces; and geometric
non-linearities, where displacements alter
the structure’s stiffness. The practical
applications of non-linear materials analysis
vary widely. In a non-linear analysis of a
component, “failure” may be defined by the
extent that a material yields rather than if the
materials yields, as in linear analysis. We
may also want to examine different failure
modes. Many ancient materials, such as
bone, shell, ceramic, stone, or wood have
unique properties that require non-linear
materials analysis to capture their complex
load response behaviour. When we are
dealing with non-linear materials in a
flexible structure, we will need to combine

large displacement and non-linear material
analysis. An important consideration for
these simulations is that as the part changes
form, it can experience a phenomenon
known as “stress stiffening”. Stress stiffening
can either increase or decrease the
components stiffness, depending upon the
applied loads and the component geometry.
At times — as is the case with membrane
effects — a relatively small change in form
results in a substantial change in stiffness.

Such complexities and non-linearities do
not mean that functionality problems are
beyond the scope of computer simulation.

Hitherto we have seen that interaction
modalities in conjunction with the form and
dimension of the model, the properties of the
materials, including weight and density, the
relation between the artefacts’ components,
kinematics, the type of medium, and physics,
are all to be considered when conducting
simulation tests, analyzing, and predicting
how the virtual archaeological artefact
would have behaved as a physical object in
possible scenarios of real world operating
conditions.

Investigating prehistoric or ancient
mechanics through computer simulation
may provide new insights into the complex
dynamics of certain phenomena, such as
event-based motion or kinematics. The
analysis of the used mechanics allows us to
understand how the behaviour with the
object was performed in the past,
quantifying the needed forces to activate a
specific mechanism, or to exert mechanical
forces to study certain phenomena and
processes.

If necessary, one can modify the mesh
density and other characteristics, redefine
parameters, assign new values and settings,
or any other input data, select another
simulation study or run a new simulation
test, to troubleshoot problems or question
the validity of the model itself. After all,
these analyses are based on experiments of
both functional hypothesis and knowledge
obtained so far.
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9.FUNCTIONAL
ANALYSIS AS REVERSE
ENGINEERING SUM UP

Function-based reasoning can be seen as
a constraint satisfaction problem where
functional descriptions constrain visual
appearance and structure, or visual
appearance and structure constrains
functional possibilities. Available mappings
between perception and function are
actually many-to-many, and recovering an
object by matching previously recognized
functionalities, may experience
combinatorial growth, what may constrain
us not to infer the actual functionality in the
past, but some more improbable action(s) or
behaviour(s).

Model-based recognition has been
thought as a possible solution. Another
view may consider reasoning about
functionality as a planning module that is
composed of helper procedures for
recognition. In this view, the functional
description is done at a higher level
discarding the complete representation. A
complete representation of the physical
world could attempt to represent the forces
governing the universe, and reach from
gravitational forces between planets to
forces between chemical compounds and
atoms.

The alternative we have presented in this
paper is reverse Engineering (RE), which can
be defined by the process of extracting
missing knowledge from anything man-
made, by going backwards through its
development cycle and analyzing its
structure, function and operation (USAITA;
Dennet, 1991, Eilam, 2005, Raja, 2008, Wang,
2011). It consists of a series of iterative steps,
each addressing different questions
regarding to an object or structure. These
steps may be repeated as often as needed
until all steps are sufficiently satisfied.

Our approach to document the
functional aspects of archaeological objects
involves applying Reverse Engineering
from the physical-to-digital stage to the

interpretation stage, by simulating the
artefacts’ function and inferring possible
inherent working processes (Figure 11).
Throughout this process, it is important to
analyze and evaluate its potentialities,
constraints, quality, robustness and
effectiveness, by controlling the flow of
information and vulnerabilities of the

model. At the end, we aim to use these
processes in the effort to achieve more
efficiently better results, as well as to
decrease research time and efforts.

Investigating prehistoric and ancient
mechanics through computer simulation
may provide new insights into the complex
dynamics of certain phenomena. Would the
object have behaved as expected? As we
have been discussing, this depends on
several interrelated issues, for these
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Figure 11 Proposed framework (Moitinho de
Almeida, and Barceló 2012a).

Figure 12 Functionality from an enhanced
virtual multidimensional model (Moitinho de

Almeida, and Barceló 2012a).



determine possible outcomes. Its form, its
material, for many properties have been
characterized by hypothetical statements, it
is then important to quantify them. But the
object must also be used in a certain
manner. An object having the required
properties therefore functions in the
intended manner, only if used in the
environment and in the way the
manufacturer/craftsman has thought up
and prescribed. The use of an object is not a
given for the craftsman, like the function,
but is thought up – together with the form
and material of the object – and thus
comprise an essential part of the solution to
the design problem (Fig. 12).

The functioning, or actual behaviour of
an object, depends both on its form and
structure, as well as on the mode and
conditions of its use. Given the form, the
material properties, and the use of an object,
then, by physical or virtual experiment, we
should try to evaluate the implied
functional behaviour(s). Given a desired
function, the craftsman must think up the
form and its use. The reasoning from
perceptual data to function is usually called
“analysis”, whereas the reasoning from
function to perceptual data is called
“synthesis”. In spite of the importance of
analysis, in design the essential mode of
reasoning is synthesis, for without an idea
of perceptual data (material, form, texture)
and use (kinematics and dynamics) there is
nothing to analyze (Chakrabarti 2002). This
reasoning from what we “see” in the
archaeological present to function in the
past – or from structure to behaviour – is
based on deduction (Roozenburg, 2002).

Our approach can be related with M.
Schiffer’s recent proposal for a “behavioral
analysis” of technological choices (Schiffer
2003): Our discussion in this paper has
concerned what he (and us) have called
material properties, a product of technical
choices, which can be defined and measured
without reference to post-manufacture
activities. In addition to directly affecting

material properties, functional analysis also
determine such measurable attributes of an
artefact as shape, size, weight and so forth,
what Schiffer denotes as Formal properties. We
have tried to show how material properties
can influence formal properties, but also
how formal properties can influence on
material ones, not only through
“technological choices, but also as a result of
goal-direct intention.

Logically speaking, perception of
function, and categorization, should be
independent of one another. One can
perceive that an object is throwable, for
instance, without knowing that it is an
arrow. Conversely, one can know that an
object is an arrow without necessarily
knowing what it is for. In practice, however,
knowing how to categorize an object
generally implies knowing what it is for, as
well where it is likely to be found and
when. In this sense, we can argue that
rather that “form determines function”, it is
better to say that “function causally
explains form, and texture, and material,
and any other perceptual property of the
artefact”.
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